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Abstract: A particularity of cell culture processes is the relatively restricted number
of valuable and accurate measurements for process control. Software sensors are
an interesting solution in response to this problem since it provides non measured
state estimation combining the available measurements to a mathematical model.
But, due to the complexity of cell culture processes, the mathematical model itself
may present some uncertainties particularly in the kinetic description. Such a
di¢ culty has lead to the development of adaptive observers which are designed to
jointly estimate state variables and model parameters. However those observers
may become particularly di¢ cult to design and to tune as the process complexity
increases. In this contribution, an adaptive observer based on the theory of the
full horizon and the asymptotic observers is proposed.Copyright c2005 IFAC
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INTRODUCTION

Products from the biotechnology industry be-
comes particularly complex in terms of reactor
design, biocatalysts, product quality, etc. As this
complexity increases, the needs of information
about the dynamics of the main constituents be-
comes crucial for control, optimization and su-
pervision. However, such a requirement is most
often limited by the availability, and the e¢ -
ciency of hardware sensors. For instance, knowing
and supervising the biomass growth during the
process may be very important. However biomass
measurement involves most often, o¤ line analy-
ses (optical density measurements, cell counting,
etc.). On line optical density sensors are available
but are particularly expensive and the measures
may be rapidly biased due to the high cell density.
A solution to these latter problems can be found
through the design of software sensors, which com-

bine some available hardware sensor signals and a
mathematical model, in order to provide estimates
of non-measured variables.

Several estimation techniques considering the
non-linear models involved in bioprocesses have
been proposed in the literature. Many state ob-
servers belong to the so called class of exponen-
tial observer. These observers are characterized
by an adjustable rate of convergence towards the
true state, which is de�ned by one or several
tuning parameters. The extended Kalman �lter,
the extended Luenberger observer, the high gain
observer and the full horizon observer belong to
this class since the convergence rate may be freely
tuned. However the main drawback of these expo-
nential observers is that their e¢ ciency strongly
rely on the model quality. Dealing with model
uncertainty was, and still is, an area of inten-
sive research particularly for kinetic uncertainties



(structure and/or parameters) which may be par-
ticularly important in the �eld of bioprocesses.
A �rst solution to cope with model uncertainty
is to design an asymptotic observer as proposed
in (Bastin and Dochain 1990). Such an observer
uses a state transformation in order to provide
a model which is independent of the kinetics.
However, the price to pay is that the rate of
convergence is completely determined by the ex-
perimental conditions (namely the dilution rate).
This may lead to very slow convergence in the case
of low dilution rate or no converge at all in the
case of batch cultures. Hence, when experimental
conditions and model structure are appropriate,
the asymptotic observer is a good solution for
state estimation with uncertain kinetic model.
However, this observer does not provide any infor-
mation on the kinetic model which was supposed
to be uncertain. Using observers as estimators
of the kinetics or model parameters was the ob-
jective of the subsequently developed observer-
based estimators.(OBE). OBE were initially de-
veloped to estimate on-line the speci�c growth
rates in bioprocesses (Bastin and Dochain 1986)
then extended to the on-line estimation of kinetic
parameters (Bastin and Dochain 1990). The OBE
stability properties are well exposed and improve-
ments of tuning procedure has been proposed
in (Oliveira et al. 1996), (Perrier et al. 2000),
(Oliveira et al. 2002). Another approach, improv-
ing the tuning procedure of an OBE was also
proposed in (Farza et al. 1997). However these
algorithms were focused on the model parameter
estimation. A natural extension was therefore to
jointly estimate the state and the uncertain model
parameters. These algorithms are known as adap-
tive observers since the state observer is evolving
by correcting the uncertain parameters. Several
approaches in this �eld are presented in (Bastin
and Dochain 1990). The most common designs
consist in considering the parameters as extra
states with no dynamics and to introduce it in an
extended Kalman or Luenberger observer. These
designs present the advantage that they follow a
standard and well-known solution. However they
present the inherent drawbacks of both observers
(stability properties, tuning procedure, lineariza-
tion, etc.). Thus other adaptive observer designs
have been proposed as in (Dochain 2003). In this
contribution an adaptive observer is proposed by
combining the asymptotic observer and the the-
ory of the full horizon observer (Bogaerts and
Hanus 2001). Such an algorithm will be used to
estimate and to correct the uncertain parameters
in order to provide a state estimation with the
corrected model. Using the full horizon theory
allows also to achieve this objective by using an
algorithm which is particularly suitable for bio-
processes, does not require any tuning parame-
ter and involves an estimation technique previ-

ously developed for the identi�cation of bioprocess
model parameters (Bogaerts (1999)), (Bogaerts
and Hanus 2000).

In the following sections the mathematical frame-
work of bioprocess modelling is presented. The
theory of the asymptotic and the full horizon
observers are then brie�y recalled. In a fourth sec-
tion the adaptive observer is described in detailed.
Illustrations on simulated cell cultures are then
presented. Finally a last section is devoted to some
conclusions.

1. MACROSCOPIC REACTION SCHEMES
AND MASS BALANCES FOR BIOPROCESS

MODELLING

A bioprocess can be described by a reaction
scheme de�ned by a set of M reactions (Bastin
and Dochain 1990). Such a reaction scheme can
be expressed by :X

i2Rk

(��i;k)�i
'k!
X
j2Pk

�j;k�j k 2 [1;M ] (1)

where
� �i;k and �j;k are the pseudo-stoichiometric coef-
�cients or yield coe¢ cients;
� 'k is the reaction rate;
� �i is the ith component;
� Rk(Pk) is the set of �i which are reactants
(products) in the reaction k;
� M is the number of reactions.

Assuming that the bioprocess takes place in a
perfectly stirred bioreactor, the system dynamics
can be described by a model resulting from mass
balances for the macroscopic species involved in
the reaction scheme:
d�(t)

dt
=K'(�(t))�D(t)�(t)+F (t)�Qg(t) (2)

where
� � 2 <N is the vector of component concentra-
tions;
� K 2 <N�M is the pseudo-stoichiometric coe¢ -
cient matrix (M � N);
� ' 2 <M is the vector of reaction rates;
� D 2 < is the dilution rate;
� F 2 <N is the vector of external feed rates;
� Qg 2 <N is the vector of gaseous out�ow rates.

In the sequel, the external feed rates and gaseous
out�ow rates are put together in a vector

u(t) = F (t)�Qg(t) (3)

In the context of state observation the state vector
can be subdivided into two vectors :

�(t)T = [�T1 �T2 ] (4)

where �1 2 <L(L 6 N) contains the elements of
� which are measured :

�1 = C� = [IL 0L;N�L]� (5)



These measures are in the form of discrete sam-
ples:

y(tk) = C�(tk) + "(tk) (6)
" 2 <L being a white noise sequence normally
distributed with zero mean:

E["(ti)] = 0 (7)

E["(ti)"
T (tj)] = �i;jQ(tj) (8)

The other elements �2 2 <(N�L) of � are the state
variables which are not measured.

2. THE ASYMPTOTIC OBSERVER

The principle of the asymptotic observer (AO)
(Bastin and Dochain 1990) is to use a state trans-
formation in order to provide at each sampling
time an estimation of the non-measured state from
the measured one without any knowledge of the
kinetic model. The derivation of the AO is based
on the following conditions : '(�) is unknown,
the yield coe¢ cients matrix K is known, L =
dim(�1) > p = rank(K). Hence, there always
exists a partition

�T = [�Ta �
T
b ] (9)

so that the corresponding partition

KT = [KT
a K

T
b ] (10)

involves a matrix Ka 2 <p�M of full row rank.
Given such a partition of K, the following matrix
equation

A0Ka +Kb = 0N�p;M (11)

has always a unique solution A0 2 <(N�p)�p. It
is therefore possible to de�ne an auxiliary vector
Z 2 <(N�p).

Z = A0�a + �b (12)

whose dynamics is independent of the kinetics
'(�) :

dZ(t)

dt
= �D(t)Z(t) +A0ua(t) + ub(t) (13)

where uT = [uTa uTb ] is the partition of u
corresponding to the partition of �.

It is also possible to write the vector Z as a linear
combination of the vectors �1 and �2 of measured
and non-measured states :

Z(t) = A1�1(t) +A2�2(t) (14)

where
A1 2 <(N�p)�L and A2 2 <(N�p)�(N�L).

The AO is �nally de�ned by:

dẐ(t)

dt
= �D(t)Ẑ(t) +A1u1(t) +A2u2(t) (15)

�̂2(t) = A
+
2 (Ẑ(t)�A1�1(t)) (16)

where A+
2 is a left pseudo inverse of the matrix

A2:

The dynamics of the state estimation error ~�2 is
given by:

d~�2(t)

dt
= �D(t)~�2(t) (17)

It is therefore obvious that the convergence of the
AO is function of the experimental conditions (D).
This observer may therefore not converge (batch
process) or converge very slowly (low dilution
rate).

The above description of the AO shows that it
provides a discrete time observation (in the case of
discrete time measurements), it is a deterministic
approach, and its convergence is de�ned by the
dilution rate However, its main advantage is that
it does not require the kinetic model.

3. THE MOST LIKELY INITIAL
CONDITIONS OBSERVER

The most likely initial conditions observer
(MLICO) (the full horizon observer in (Bogaerts
and Hanus 2001)) is a stochastic observer that
consists in integrating the simulation model be-
tween two measures (prediction) starting with the
most likely initial conditions identi�ed on the ba-
sis of all the available measures (correction).

The prediction equation of the full horizon ob-
server is de�ned as

d�̂(t)

dt
=K'(�̂; t)�D(t)�̂(t) + u(t) (18)

�̂(t) = g(t;u(t); �̂0=k) 8t 2 [tk; tk+1] (19)

where g(t;u(t); �̂0=k) is the prediction of �(t)
on the time interval [tk; tk+1] deduced from the
integration of (18) from the most likely initial
conditions �̂0=k. These latter are identi�ed by
solving a nonlinear optimization problem on the
basis of all the measures y(tj); j 2 [1; k] available
up to time k :

�̂0=k =
1

2
Argmin

�0

kX
j=1

�T (tj)Q
�1(tj)�(tj) (20)

where
�(tj) = y(tj)�Cg(tj ;u(t); �̂0=k) and
Q is the measurement error covariance matrix.

Note that a necessary condition of existence of
the solution (20) is that the number of available
measures is greater or equal to the number of
initial states to identify.

As pointed out in (Bogaerts and Hanus 2001),
the full horizon observer provides a continuous-
time estimation even on the basis of on rare and
asynchronous measurements, consists of a sto-
chastic approach, is a true nonlinear approach
(no approximation such as linearization), does not



require any tuning, may be theoretically analyzed
(e.g., state estimation correction) and provides
con�dence intervals for the state estimates. How-
ever, as classical exponential observers, it requires
the full knowledge of the model structure (includ-
ing the kinetics).

4. THE ADAPTIVE MOST LIKELY INITIAL
CONDITIONS OBSERVER

Suppose that some of the kinetic parameters #cin
are unknown or uncertain. The vector of kinetic
parameters may therefore be subdivided into a
known part (pcin) and an unknown one (p

0
cin):

#Tcin =
�
pTcin p

0T
cin

�
(21)

The principle of the adaptive MLICO is to extend
the vector of initial conditions to be estimate
with the unknown or uncertain kinetic parame-
ters. These parameters will therefore be jointly es-
timated with the initial conditions. The parameter
vector to be identi�ed with the most likely estima-
tor at each measurement time becomes therefore:

#̂
T

k =
h
�̂
T

0=k p̂
0T
cin=k

i
with #̂k 2 <N# (22)

However, it is well known that increasing the size
of the vector of parameters to identify may lead to
some numerical troubles such as local minima dur-
ing the optimization procedure. Moreover, with-
out going into further details in non linear system
observability (and more speci�cally, the uniform
observability (Gauthier and Kupka 1994)) there
always exists a minimum number of measured
states which is necessary to guarantee the system
observability. This minimum number is depending
on the speci�c non linear model being used. Since
in bioprocesses the number of physical sensors is
restricted, the number of measured state becomes
rapidly not su¢ cient to insure the system observ-
ability especially when the state vector is aug-
mented with unknown parameters. In order to cir-
cumvent these problems the proposed adaptive al-
gorithm aims to exploit the information provided
by the AO. Indeed, like in OBE with partial state
measurement, an estimation of the state which is
not measured by hardware sensors (�2) is provided
by the AO and subsequently considered as a new
measurement. With such an additional informa-
tion one could expect the optimization problem
to be easier. Moreover, as it will be illustrated
in section 5, the additional information from the
AO increases the number of "measured" states
allowing an extension of the state estimate while
keeping the system observability. A complete state
vector provided by measurements and the AO
is therefore available for the adaptive algorithm
which is then used to provide a continuous state
estimation of the complete state vector together

with the unknown kinetic parameter(s). The prin-
ciple of this adaptive observer is presented in
�gure (1).

AO y(tk)

Adaptive
MLICO

)(,̂2 kA tξ

)(̂,)(̂),(̂ 21 kttt ϑξξ

Fig. 1. Principle of the adaptive MLICO

Like in the classical MLICO, the prediction step
between two measurement times is insured by
integrating the process model. The prediction
equations of the observer correspond therefore to
(note that for the simplicity of notations, only the
time and estimated parameters dependencies will
be explicitly written):

d�̂(t)

dt
=K'(#̂k; t)�D(t)�̂(t) + u(t) (23)

�̂(t) = g(#̂k; t) 8t 2 [tk; tk+1] (24)

where g(#̂k; t) is the prediction of �(t) on the time
interval [tk; tk+1] deduced from the integration
of (23) with the corrected likely initial condi-
tions �̂0=k and kinetic parameters p̂

0
cin=k. As for

the correction step, two modi�cations are intro-
duced. Firstly, the vector of parameters to identify
contains the initial conditions and the uncertain
kinetic parameter(s) (see 22). Secondly the non
measured state estimation provided by the AO
(�̂2A) is introduced in the cost function (20). The
optimization problem used for the correction pro-
cedure corresponds therefore to:

#̂k =
1

2
Argmin

�0

kX
i=1

�T (ti)
TQ�1

A (ti)�(ti) (25)

where

�(ti) =

�
y(ti)� ĝ1(ti)
�̂2A(ti)� ĝ2(ti)

�
with ĝ1(ti) and ĝ2(ti)

are the partitions of the vector ĝ into the mea-
sured and the non measured state trajectories.
QA is the covariance matrix of the "measure-
ment" errors (i.e. the real measurement errors to-
gether with the estimation errors provided by the
AO) developed in (Hulhoven and Bogaerts 2004).

5. CASE STUDIES

5.1 Simple microbial growth

In a �rst example, the adaptive observer is illus-
trated on a simple microbial culture. Consider a



fed-batch bacterial fermentation taking place in a
perfectly stirred bioreactor. Consider the follow-
ing reaction scheme :

�SS
'!

x
X (26)

where S denotes the substrate concentration, X
the biomass concentration, ' the reaction rate and

�S the yield coe¢ cient.
x
X denotes an autocat-

alytic reaction. The mass balances corresponding
to this reaction scheme are :

dS

dt
=��S'�DS +DSin (27)

dX

dt
= '�DX (28)

where D is the dilution rate and Sin the substrate
concentration in the feed medium. The reaction
rate ' will be described using the Monod law:

' = X
�mS

Km + S
(29)

The numerical values used for the simulation
are : �S = 5[ g(1011cell)�1]; Km = 12[ g l�1];
�m = 1:4[ h�1]; S(0) = 12[ g l�1]; X(0) =
0:14[1011cell l�1]; Sin = 20[ g l�1]; D = 0:3

tf
t[ h�1]

where tf is the �nal time of the culture.

In order to illustrate the performances of the
adaptive observer the simulation results are con-
sidered as the real process, the substrate is as-
sumed to be measured every hour with a white
noise of zero mean E ["] = 0 and standard devi-
ation � = 0:5 g l�1. For this system, a classical
MLICO may be used to identify the biomass.
However, suppose now that the parameter �m is
uncertain and has to be estimated in the observer
algorithm. The unique substrate measurement is
not su¢ cient to allow both estimations (biomass
and �m). Using the biomass state estimation pro-
vided by the AO as an extra information allows
to circumvent this problem: Figure (2) shows the
results obtained by applying the adaptive observer
to the process when an initial guess error on �m
is introduced.As it can be observed from these
results, the adaptive observer allows to provide
a continuous and converging state estimation of
the biomass and the substrate. Moreover, it jointly
provides an estimation of the uncertain parameter
�m which converges to the true value.

5.2 Animal cell culture

Another case study is inspired from the simulated
example of an animal cell culture presented in
(Perrier et al. 2000). The process model is based
on the following reaction scheme

k1S
'1!

x
X (30)

k2S
'2!

x
X + k3L (31)
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Fig. 2. Simple microbial growth adaptive observa-
tion X̂(0) = 1011cells= l; �̂max(0) = 5 h

�1, �
: estimated signal with con�dence intervals :
99% and - - - : real signal.

The mass balances corresponding to this reaction
scheme are :

dS

dt
=�k1'1 � k2'2 �DS +DSin (32)

dX

dt
= '1 + '2 �DX (33)

dL

dt
= k3'2 �DL (34)

The reaction rates '1 and '2 are described using
the following models:

'1 =X
�m;1S

KR + S

KL

KL + L
(35)

'2 =X
�m;2S

KF + S
(36)

The numerical values used for the simulation
are identical to those used in (Perrier et al.
2000). Only, the feeding pro�le is modi�ed :D =
F in

V ; F in = 1 l h�1; Sin = 0:05mol l�1.

As in the previous example the simulated process
will be considered as the real process. The lactate
and substrate are supposed to be measured every
3 hours with a white noise of zero mean E ["] = 0
and standard deviation � = 0:3mM . Since in
this case two state measurements are available,
introducing the biomass state estimation from
the AO allows to use the adaptive observer to
estimate two kinetic parameters and to provide
a state estimation from the corrected model and
initial conditions. Figure (3) and (4) show these
results when an error is introduced on the initial
estimates of �m;1 and �m;2.

6. CONCLUSION

This contribution proposes an adaptive observer
used to estimate bioprocess state variables with
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Fig. 3. Animal cell culture adaptive state obser-
vation. X̂(0) = 106cells=ml; �̂m;1(0) = 5 h

�1

and �̂m;2(0) = 2 h�1, � : adaptive observa-
tion with con�dence intervals : 99%. - - - :
real signal.
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Fig. 4. Parameter estimation with con�dence in-
tervals : 99%. �̂m;1(0) = 5 h

�1 and �̂m;2(0) =
2 h�1

estimated and corrected kinetic parameters. The
theory of this adaptive observer is based on the
full horizon observer. The unknown or uncertain
kinetic parameters are estimated jointly with the
initial conditions using a maximum likelihood esti-
mator. In order to allow this parameter extension,
the information from the non-measured state pro-
vided by an AO is introduced in the cost function.
The initial conditions and the uncertain kinetic
parameters are therefore identi�ed on the basis of
the measurements and the state observation from
an AO. The corrected model is then integrated
in order to provide a complete and continuous
state estimation. Since this observer is based on
the full horizon observer theory it exploits its
main advantages i.e.: a true non linear stochas-
tic approach, directly designed from the process
model, involving a technique previously developed
for bioprocess model parameter estimation and
provides a continuous state estimation from dis-
crete and rare measurements which is particularly

realistic in the �eld of bioprocesses. Finally, this
observer was illustrated on two simulated exam-
ples in order to show its ability to provide biomass
observation and up to two parameters estimation
from only two measurements.
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