

NOVEL METHODOLOGY FOR PARTITIONING COMPLEX SYSTEMS FOR FAULT DIAGNOSIS
PURPOSES

C. D. Bocaniala1 and J. Sa da Costa2

1University �Dunãrea de Jos� of Galati, Computer Science and Engineering Dept.
Domneasca 47, Galati 6200, Romania

Cosmin.Bocaniala@ugal.ro

2Technical University of Lisbon, Instituto Superior Tecnico, Dept. of Mechanical Engineering, GCAR/IDMEC
Avenida Rovisco Pais, Lisboa 1096, Portugal

sadacosta@dem.ist.utl.pt

Abstract: The criterion used for partitioning is d-separation: a parallel between causal
independency property and vertex separation in digraphs. If X, Y and Z represent the
vertex subsets of two neighbouring partition regions and respectively the border between
them, the d-separation criterion is used to decide if �knowing Z renders Y irrelevant to
X�. It follows that diagnosis may be performed locally, inside each region, without
communicating, via partition borders, with other regions. If borders are affected by faults,
communication is needed. The described partitioning provides minimal borders between
regions. It follows that communication process has minimal computational complexity.
Copyright © 2005 IFAC

Keywords: Distributed models, Fault diagnosis, Feedback loops, Graph theoretic models,
Minimization.

1. INTRODUCTION

Fault detection and isolation (FDI) methodologies
use actuators and sensors measurements. When
dealing with complex (large-scale) industrial
installations, designing a fault diagnosis system
becomes very difficult due to the large number of
sensors and actuators. Any solution given to this
problem must take into account the fact that
practitioners prefer rather simplistic systems due to
the fact that, in practice, simple and verifiable
principles always win the competition versus
complex methods that are usually characterized by
instability, unpredictable behaviour and large
computational burden (Patton, 1997). The distributed
diagnosis framework described in this paper is able
to achieve its goal by using simple and verifiable
principles coming mainly from causal modelling and
distributed computing. The main component of the
framework is the methodology for partitioning the
monitored system.

There are two main approaches in performing
distributed fault diagnosis. One possible approach is
to define a partition on the system structure and to
assign one agent to each element of the partition.

Each agent performs local diagnosis inside the area
they are assigned to. Global diagnosis is obtained by
defining a proper communication scheme among
agents. This approach has been implemented for
instance by Letia et. al. (2000), Fabre et. al. (2001),
the DIAMOND project (Albert et. al., 2001), and
Koscielny (2004). The distributed diagnosis
framework described in this paper aligns with this
first approach.

The other possible approach to distributed fault
diagnosis is to bring together the diagnosis expertise
of different methodologies (the agents). Isermann
and Ballé (1997) underline the fact that a single
diagnosis method is inadequate for matching all
challenges posed by a complex system. The analysis
may be performed at the whole system level or at a
lower level, i.e. taking into account subsystems
and/or even single components such as a single
sensor or a single actuator. In this case, the
complexity burden is much larger as a central
supervisor is needed to determine first the level of
analysis and second the panel of methodologies used
for each considered subpart of the system. A recent
implementation of this approach is MAGIC project
(Köpen-Seliger et. al., 2003; Lesecq et. al., 2003).

mailto:CosminB.ocaniala@ugal.ro
mailto:sadacosta@dem.ist.utl.pt

The methodologies mentioned above lack a coherent
methodology that partitions the monitored system
into a set of subsystems such that the independence
level of local diagnosis process for each subsystem is
maximal and such that the communication between
different subsystems, required for formulating global
diagnosis, is minimal. The described methodology
fulfils the previous conditions as follows. It partitions
the monitored system into fully independent
subsystems. It also insures minimal borders between
different subsystems which imply minimal
communication. An important contribution of the
paper is that it provides the described methodology
with theoretical support.

The content of the paper is organized as follows.
Section 2 briefly sketches the distributed fault
diagnosis framework inside which the described
partitioning methodology is used. Section 3 presents
the feedback loops replacement methodology that
allows a system model with feedback to be
transformed into a model without feedback, yet
preserving the temporal information encoded by the
replaced feedback loops. This is needed as the
partitioning methodology may be applied only on
system models with no feedback. Section 4 brings in
the methodology used to build the partitions of the
monitored systems. Last section, Section 5,
summarizes the paper contributions and gives a
possible future research direction.

2. DESCRIPTION OF THE DISTRIBUTED
DIAGNOSIS FRAMEWORK

The complexity of a system resides in the number of
its basic components, actuators and sensors. The
causal model of a system may be encoded as a
directed graph (digraph) where vertices represent the
available actuators and sensors readings, and edges
represent the causal links between these
measurements. The complexity of the system is
reflected in the complexity of the associated digraph.
The described distributed fault diagnosis framework
basically (i) considers the causal model of the system
as a map, (ii) partitions this map into edge disjoint
regions separated by borders formed by vertices, and
(iii) assigns a dedicated agent to each region (Fig. 1).
For step (ii), notice that each region may be treated
recursively in the same manner as the initial map,
therefore inducing a local hierarchy of agents. The
local expertise of the agents, as well as the
interaction between them is used to robustly detect
and isolate the faults in the system. The use of this
distributed scheme allows maintaining the focus only
on those regions of the map that are affected by
faults. Hence, monitoring a complex system becomes
a tractable problem.

In order to comply with the natural requirement for a
as small as possible diagnosis computational time,
the previous partitioning is required to satisfy next
conditions: (i) the agents should be able to
independently asses the state of the system in the
assigned area, and (ii) the interaction between
different agents should be kept as small as possible.

The complexity of the interaction between two
agents is given by the number of vertices located on
the borders between the corresponding regions.

agent 1 agent 2

agent 3 agent 4

agent 5

Fig. 1. Partitioning the causal model of a system

The first condition is fulfilled by using the d-
separation criterion, introduced in (Pearl and Paz,
1985; Pearl and Verma, 1986), to split the map in
separate regions. The criterion offers a parallel
between the causal independency and the vertex
separation in digraphs. If X, Y and Z represent three
vertex subsets in a causal model, the d-separation
criterion is able to determine if �knowing Z renders Y
irrelevant to X�. For the proposed partitioning, if X
and Y represent the vertex subsets of two
neighbouring regions, and if Z represents the vertex
subset that constitutes the border between the two
regions, then the d-separation criterion always holds,
i.e. the regions X and Y are causally independent.

An important drawback of the d-separation criterion
is that it can be applied exclusively on acyclic
digraphs. That is why it is needed a methodology that
allows cyclic causal models to be transformed into
acyclic models. The transformation needs to be
carried out without actually losing the structural and
behavioural information given by feedback. This
methodology is described in Section 3.

The second condition is fulfilled by using the
multilevel hypergraph partitioning (Karypis, 2002).
The multilevel partitioning paradigm is based on a
very simple idea. First, the original hypergraph
undergoes a sequence of successive approximations
that represent smaller and smaller sized versions of
the original configuration until the hypergraph is
reduced to a few tenths of vertices. This is called the
coarsening phase. At this point, some algorithms are
used to compute a partitioning of the current form of
the hypergraph. This second phase is called the initial
partitioning phase. The final phase is to use the
partitioning of the smallest hypergraph to derive the
partitioning of the original hypergraph by successive
projections of the current partition to the next level
finer approximation of the original hypergraph. The
last phase is called the uncoarsening and refinement
phase.

The analyzed causal model is transformed into a
hypergraph so that the following equivalence holds:
the causal model has a minimal number of vertices
on the partition borders if and only if the equivalent
hypergraph has a minimal number of hyperedges cut
by the partition borders.

The previous multilevel partitioning hypergraph
algorithm has been implemented by its authors into
an application called hMeTiS. The application,
together with a User Manual, can be downloaded
from http://www-users.cs.umn.edu/~karypis/hmetis/
index.html.

3. FEEDBACK LOOPS REPLACEMENT
METHODOLOGY

The section describes a feedback loops replacement
methodology used to obtain an acyclic causal model
from a cyclic causal model. The most important
property of the obtained acyclic causal model is that
it reflects not only the structural properties of the
original cyclic causal model, but also its behaviour in
time. The initial model is represented as a digraph
where vertices stand for the sensor measurements at
the initial time-step of the analysis, and edges stand
for cause-effect relationships between them. In order
to reflect the behaviour of the system in time, this
initial model is replicated at each time step, i.e. when
new sensor measurements are available. The vertices
of the new replica correspond to the values of the
sensor measurements at the current time-step. New
edges, which reflect cause-effect relationships
between vertices in the current replica of the model
and vertices in the previous replicas, must be added.
As it is detailed later in the section, adopting models
built in the previous manner, offers the opportunity
to replace a feedback loop of the system with an
acyclic substructure by unfolding it in time.
However, all structural information encoded by the
cyclic model and all temporal information given by
feedback are preserved. It is to be noticed that, as the
number of the considered time-steps increase, some
vertices of aged replicas of the initial model become
causally irrelevant to the other vertices in the model
and, therefore, they can be eliminated. The interval
of time for which the causal dependencies between
older vertices and newer vertices are relevant is
called the relevant time-window span (Bocaniala,
2004). Thus, the model is dynamic in both positive
and negative sense, i.e. vertices may be added and
vertices may be eliminated as well.

The first subsection presents an algorithm that
always provides an edge cut set for the feedback
loops in a cyclic causal model. The algorithm uses
the distribution of feedback loops on levels given by
the level partitioning (Viswanadham et al., 1987). On
the basis of the algorithm in the first subsection, the
second subsection presents the algorithm for building
the acyclic causal model of a cyclic causal model.

3.1 The minimal edge cut set of a feedback loop

Viswanadham et al. (1987) describe in their book an
algorithm for structuring a digraph based on the
reachability relation on the digraph vertex set. The
reachability relation R is defined as follows. Given
two vertices vi and vj, vi R vj if and only if there is a
directed path from vi to vj. Structuring a digraph with
respect to the reachability relation actually builds a

partition on the vertex set into equivalence classes
called levels. Balakrishnan (1997) defines a strongly
connected component (SCC) of a digraph as a
maximal set of interconnected feedback loops. It
follows that the set of the SCCs of a causal model
concentrates the whole feedback structure of the
model. The level partitioning algorithm insures that
there is only one SCC per level, i.e. the maximum
possible number of SCCs equals the number of
levels. Therefore, given the level partitioning of a
cyclic causal model, the task of finding an edge cut
set that breaks all loops in the system reduces to
finding an edge cut set for each SCC given by the
level partitioning.

In the following, the algorithm that always provides
an edge cut set for a SCC is given. The edge cut set
will be required to be minimal in the sense that, if
possible, each loop is cut on only one edge. Notice
that there may be cut edges that break more than one
loop. The most favourable situation is when the
number of this kind of edges is maximal. The
algorithm that computes the minimal edge cut set
(MECS) for a SCC uses the breadth-first search
(BFS) procedure when traversing the SCC. The
MECS for the whole causal model is the reunion of
the MECS computed for all its SCCs.

Algorithm 1 (The minimal edge cut set of a SCC)

Step 1. Choose randomly one vertex r in the SCC and
consider it the root of the BFS tree. Build the BFS
tree.

Step 2. An edge that does not belong to the BFS tree
is called a left-out edge. For each layer of the BFS
tree, for each vertex v on that layer, for each left-out
edge e originating from v do the following.

Step 2.1. Check all directed paths containing v and e
if (i) do not contain any edge in the MECS, and if (ii)
contain at least an ancestor w of v in BFS tree. If the
previous two conditions are satisfied, then there is at
least one loop, i.e. the loop containing v, e and w,
which is not yet cut. By adding edge e to MECS this
loop, which contains v, e and w, and possibly other
loops will be cut by e.

Step 2.2. Check if MECS remains minimal after
adding e and eliminate the redundant cut edges. An
edge from MECS is called redundant if the loops that
it cuts are already cut by other edges from MECS.□

Theorem 1 Given a cyclic causal model, Algorithm 2
provides always a minimal edge cut set for each
SCC.

Proof First of all, notice that each loop in the
considered SCC contains at least one left-out edge.
The justification is immediate. The BFS tree from
Step 1 is acyclic. If the left-out edges are added to
this tree then the obtained graph is the original SCC.
The loops in original SCC have been �restored� by
adding the left-out edges. It follows that MECS
represents a subset of the left-out edges set. What is
left to be proven is that the MECS provided by

http://www-users.cs.umn.edu/~karypis/hmetis/

Algorithm 1 really cuts all loops in the SCC and that
it is minimal in the defined sense.

Let denote by BFS(t) the BFS tree with vertex t as
root. Notice that, if the edge e in Step 2.1 of the
algorithm is v→u, all directed paths containing v and
e represent directed paths in BFS(u). Using this
observation, Step 2 may be interpreted as follows: if
there is an ancestor w of v in BFS(r) from Step 1,
such that w belongs to BFS(u) and such that the
directed path between root u and w in BFS(u) does
not contain any edge from MECS, then edge e is
added to MECS. If each directed path in BFS(u)
between u and one of its ancestors w in BFS(r)
contains an edge f from MECS, then the loop
containing v, e and w and possibly other loops are
already cut by f. The previous discussion proves that,
if there is any loop that contains edge e and that it is
not yet cut by other edge in MECS, this loop will be
cut by adding e to MECS in Step 2.1. It follows that
MECS will cut all loops in the considered SCC.
Moreover, MECS is already minimal in the sense
that an edge enters MECS if and only if a loop not
yet cut is detected. What is left to be investigated, so
that MECS is minimal in the sense defined at the
beginning of the subsection, is the elimination of
redundant edges from Step 2.2.

s

a

b

c

d

g

h

Fig. 2. Two possibly redundant edges in BFS(s) tree

Let denote by AN(v) the ancestors of v in BFS(r) and
by EL(u) (from eliminated) all vertices s in BFS(u)
such that the directed path between u and s is cut by
an edge from MECS. Then the condition for edge e
to enter MECS may be expressed as

,

, ()

() () ()

e left - out edge from SCC

e v u v BFS r

e MECS AN v BFS u EL u

 (1)

The redundant cut edges mentioned in Step 2.2 may
appear in a BFS(s) tree, s≠r, as shown in Fig. 2. The
directed path from s to d contains both edges g and h.
The condition s≠r is given as both g and h represent
left-out edges and, by definition, BFS(r) does not
contain any left-out edge. As detailed above, edges g
and h are cut with the purpose of disconnecting a and
respectively c from the vertices in AN(a) respectively
AN(c). When both g and h appear on the directed
path from s to d in the BFS(s) tree, s≠r, the fact that
they are cut may be interpreted as disconnecting a
and respectively c from the vertices in AN(a) ∩
SubBFS(s,b) respectively AN(c) ∩ SubBFS(s,d),
where SubBFS(s,t) represents the subtree of BFS(s)
having the root t. If edge g is fixed and for any edge
h and any vertex s

(1) g and h belong to the path between

s and d in BFS(s)

(2) AN(a) SubBFS(s,b) AN(c) SubBFS(s,d)
(2)

then g may be eliminated from MECS in Step 2.2. It
follows that MECS is minimal in the sense defined at
the beginning of the subsection.□

Corollary 1 Given a cyclic causal model, there is
always a minimal edge cut set (MECS) that renders
the causal model acyclic.

Proof Theorem 1 insures that there is always a
MECS for each SCC of a cyclic causal model. It
follows that the reunion of these MECS, i.e. the
MECS of the cyclic causal model, always exists and
it renders acyclic the initial cyclic causal model.□

3.2 Transforming a cyclic causal model into an

acyclic model by feedback loops unfolding in
time

Given the algorithm in the previous subsection, it is
now possible to give an algorithm that computes the
acyclic causal model of a cyclic causal model by
performing feedback loop unfolding in time. The
algorithm must be provided with the relevant time-
window span constant cmax (see the introductory part
of section).

Algorithm 2 (Feedback loops unfolding in time for
obtaining an acyclic causal model corresponding to a
cyclic causal model)

Step 1. If the analyzed causal model is cyclic, then
first obtain the initial model (see the introductory part
of this section) by eliminating the minimal edge cut
set (MECS) from the cyclic causal model.

Step 2. Let t be the initial time-step. If St is an
element of the initial model, then its instance at the i-
th time-step, i=1, �, cmax, is noted as St+i*T. The
possible connections in the final acyclic model are
detailed in the following.

Step 2.1. All vertices St+j*T, 0j<i, will have an
outgoing connection with St+i*T.

Step 2.2. If Ut is another element of the initial model,
Ut≠St, so that St and Ut are connected in the initial
model, then all pairs St+i*T and Ut+i*T will have the
same type of connection.

Step 2.3. Finally, for each edge U→S or S→U in
MECS, the connection Ut+(i-1)*T→St+i*T or
respectively St+(i-1)*T→Ut+i*T is added to the model.□

Theorem 2 Each vertex in the acyclic causal model
obtained by applying Algorithm 2 to a cyclic causal
model, receives all input values that it is supposed to
receive and provides all output values that it is
supposed to provide.

Proof The proof represents an analysis of Algorithm
2. First, the connections between vertices at the i-th
step must be identical with the connections that exist
in the initial model. This is insured by Step 2.2. The
loss of connectivity information caused by the
feedback loop replacement is recovered via
unfolding in time, Step 2.3.□

Corollary 2 The acyclic causal model obtained by
applying Algorithm 2 to a cyclic causal model
preserves all structural information and all temporal
information given by the initial cyclic causal model.

Proof It is an immediate consequence of Theorem
2.□

4. PARTITIONING METHODOLOGY

This section presents the algorithm that performs the
proposed partitioning. The number k of regions must
be decided by the user. The decision must take into
account the fact that the whole set of vertices is
going to be distributed inside each region of the
partition as well as on the borders of the partition.
The goal is to obtain a partition that (i) has a minimal
vertex-cut set and that (ii) has all pairs of
neighbouring regions causally independent (d-
separated). The uncertainty of this decision consists
in the fact that the algorithm used guarantees
minimal borders, but neither it is able to estimate the
number of vertices located on them nor it is able to
estimate how many vertices belong to each partition
member. Future research need to find methodologies
able to eliminate this uncertainty. One possible
direction is to insert principles from algorithms that
provide minimal d-separation sets (Tian et. al.,
1998) into multilevel partitioning algorithm.

Algorithm 3 (Partitioning a causal model into
minimally separated and causally independent
regions)

Step 1. If the input causal model CM contains
feedback loops, use Algorithm 2 to perform feedback
loops replacement in order to obtain the
corresponding acyclic causal model (ACM).

Step 2. Compute the moral graph MG corresponding
to ACM. The moral graph of an acyclic digraph is
built by connecting first all pairs of vertices that are
parents of the same vertex and, then, giving up edge

orientation (Lauritzen et. al., 1990). The �morality�
of the obtained graph is insured by the fact that all
vertices that share a child vertex are now �married�
by connecting edges.

Step 3. Transform the MG graph into a hypergraph
HG so that (i) the edges of MG represent the vertices
of HG and (ii) each hyperedge h of HG corresponds
to a vertex v in MG as follows,

{ / is an incoming/outgoing

edge in/from }

h e MG e

v

 (3)

Step 4. Use the hMeTiS application, with the k
parameter decided by the user, to partition HG into k
parts. For more details see (Bocaniala, 2004).

Step 4.1. The vertex-cut set in MG corresponds to the
hyperedge-cut set of HG.

Step 4.2. The regions in the MG partition are
delimited using the edge labelling of MG provided by
the HG partition. The vertex-cut set on MG
determines a partition of ACM into causally
independent regions.□

Theorem 3 Each hyperedge-cut set in HG has a
correspondent vertex-cut set in MG of the same size.

Proof When partitioning HG using hMeTiS in Step 4
of Algorithm 3, each hyperedge h in HG may or may
not be cut by the provided partition. In the following
these two possible situations are analyzed.

If a hyperedge h in HG is cut by the HG partition
provided by Step 4, this fact has the following
interpretation. The elements in h span more then one
region of the HG partition. But, the elements in h are
all edges in MG with one end in a vertex v from MG
(Eq. 3). Since the partition regions in MG are
determined by the edge labelling provided for HG
(Step 4.2), it follows that the edges in MG with one
end in v, span more than one region of the MG
partition. It follows that v represents a vertex located
on the borders of the partition in MG.

If a hyperedge h in HG is not cut by the HG partition
provided by Step 4, this fact has the following
interpretation. The elements in h span one single
region of the HG partition. But, the elements in h are
all edges in MG with one end in a vertex v from MG
(Eq.3). Since the partition regions in MG are
determined by the edge labelling provided for HG
(Step 4.2), it follows that the edges in MG with one
end in v, span one single region of the MG partition.
It follows that v represents a vertex located inside
one of the partition regions of MG.

From the previous two analyses, it results that each
hyperedge h in the hyperedge-cut set provided by
Step 4 has a corresponding vertex v in the edge-cut
set of MG. It follows that the claim in the theorem
text is true, i.e. each hyperedge-cut set in HG has a
correspondent vertex-cut set in MG of the same
size.□

Corollary 3 Given a causal model of a system,
Algorithm 3 provides a partition of its acyclic form
that (i) has a minimal vertex-cut set and that (ii) has
all pairs of neighbouring regions causally
independent, i.e d-separated by the minimal vertex-
cut set.

Proof This corollary is an immediate consequence of
Theorem 3. The hyperedge-cut set of HG provided
by hMeTiS is minimal (Step 4). Theorem 3 proved
that the vertex-cut set in MG induced by the
hyperedge-cut set in HG have the same cardinal. It
follows that the induced vertex-cut set in MG is also
minimal.

One vertex set separating two regions in MG will d-
separate the two regions in the acyclic form ACM of
the original causal model CM (Lauritzen et. al.,
1990). It follows that the vertex-cut set induced on
MG by the hyperedge-cut set in HG will d-separate
each pair of neighbouring regions in ACM.□

5. CONCLUSIONS

The paper described a novel methodology for
partitioning complex system for fault diagnosis. The
methodology partitions the causal model associated
with the monitored system into minimally vertex-
separated and causally independent (d-separated)
regions.

The fact that each region is causally independent by
the rest of the model allows performing the diagnosis
of that region locally, without needing to
communicate with the rest of the model. This
property allows maintaining the diagnosis focus
exclusively on those regions of the map that are
affected by faults. Hence, monitoring a complex
system becomes a tractable problem.

Moreover, if the causal independence property is
affected by faults, the communication between
different regions needed has a minimal
computational complexity. This is due to the fact that
communication takes place via partition borders,
which are minimal.

The proposed partitioning methodology has the
potential to be used for fault-tolerant control
purposes. Fault-tolerant control is concerned with
making a controlled system able to maintain control
objectives, despite the occurrence of a fault. For
instance, if faults that produce structural changes that
do not require system shutdown occur, the causal
model of the system and the associated distributed
fault diagnosis system also suffer modifications and
may be updated by re-partitioning using the same
algorithm.

REFERENCES

Albert, M., Längle, T., Wörn, H., Kazi, A.,

Brighenti, A., Senior, C., Revuelta Seijo, S.,
Sanz Bobi, M. A., Villar, J. (2001). Distributed
architecture for monitoring and diagnosis, EU

ESPRIT Project DIAMOND. http://www.
ipr.ira.uka.de/~~kamara/diamond.

Balakrishnan, V.K. (1997). Graph theory, Schaum�s
Outlines. McGraw-Hill, New York.

European Community�s FP4, COPERNICUS project
(http://www.eng.hull.ac.uk/research/control/Cop
ernicus/contentscop2.htm).

Fabre, E., Benveniste, A., Jard, C. (2002).
Distributed diagnosis for large discrete events in
dynamic systems. In: Preprints of the 15th IFAC
World Congress, Barcelona, Spain.

Isermann, R., Ballé, P. (1997). Trends in the
application of model-based fault detection and
diagnosis of technical processes. Control
Engineering Practice 5(5), 709-719.

Karypis, G. (2002). Multilevel Hypergraph
Partitioning, Technical Report 02-25,
Department of Computer Science and
Engineering, University of Minnesota, USA.

Koscielny, J. (2004). Diagnostics of industrial
processes in decentralised structures, In: Fault
Diagnosis. Models, Artificial Intelligence,
Applications (J. Korbicz, J. M. Koscielny Z.
Kowalczuk and W. Cholewa. (Ed)). Springer.

Köpen-Seliger, B., Marcu, T., Capobianco, M.,
Gentil, S., Albert, M., Latzel, S. (2003).
MAGIC: An integrated approach for diagnostic
data management and operator support. In:
Proceedings of the IFAC Symposium
SAFEPROCESS�03, 187-192. Washinton, USA.

Lauritzen, S. L., Dawid, A. P., Larsen, B. N., Leimer,
H. G. (1990). Independence properties of
directed Markov fields, Networks 20: 409-505.

Letia, I. A., Craciun, F., Kope, Z., Netin, A. (2000).
Distributed diagnosis by BDI agents. In:
Proceedings of the OASTED International
Conference on Applied Informatics.

Lesecq, S., Gentil, S., Exel, M., Garcia-Beltran, C.
(2003). Diagnostic tools for a multi-agent
monitoring system. In: Proceedings of IMACS
IEEE CESA Multi-Conference on Computing
Engineering in Systems Applications, Lille,
France.

Patton, R. J. (1997). Fault-tolerant control: The 1997
situation. In: Proceedings of the IFAC
Symposium SAFEPROCESS�97, 1033-1055,
Hull, UK.

Pearl J. and Paz A. (1985). Graphoids: A Graph-
Based Logic for Reasoning about Relevance
Relationships, Technical Report CSD-850038,
Computer Science Department, Cognitive
Systems Laboratory, University of California,
Los Angeles, USA.

Pearl J. and Verma T. (1986). Formal Properties of
Probabilistic Dependencies and their Graphical
Representations, Technical Report CSD-860019,
Computer Science Department, Cognitive
Systems Laboratory, University of California,
Los Angeles, USA.

Tian, J., Verma T. and Pearl J. (1998). Finding
Minimal d-Separators, Technical Report CSD-
980007, Computer Science Department,
Cognitive Systems Laboratory, University of
California, Los Angeles, USA.

http://www.

