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Abstract: The criterion used for partitioning is d-separation: a parallel between causal 
independency property and vertex separation in digraphs. If X, Y and Z represent the 
vertex subsets of two neighbouring partition regions and respectively the border between 
them, the d-separation criterion is used to decide if �knowing Z renders Y irrelevant to 
X�. It follows that diagnosis may be performed locally, inside each region, without 
communicating, via partition borders, with other regions. If borders are affected by faults, 
communication is needed. The described partitioning provides minimal borders between 
regions. It follows that communication process has minimal computational complexity.  
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1. INTRODUCTION 


Fault detection and isolation (FDI) methodologies 
use actuators and sensors measurements. When 
dealing with complex (large-scale) industrial 
installations, designing a fault diagnosis system 
becomes very difficult due to the large number of 
sensors and actuators. Any solution given to this 
problem must take into account the fact that 
practitioners prefer rather simplistic systems due to 
the fact that, in practice, simple and verifiable 
principles always win the competition versus 
complex methods that are usually characterized by 
instability, unpredictable behaviour and large 
computational burden (Patton, 1997). The distributed 
diagnosis framework described in this paper is able 
to achieve its goal by using simple and verifiable 
principles coming mainly from causal modelling and 
distributed computing. The main component of the 
framework is the methodology for partitioning the 
monitored system. 

There are two main approaches in performing 
distributed fault diagnosis. One possible approach is 
to define a partition on the system structure and to 
assign one agent to each element of the partition. 

Each agent performs local diagnosis inside the area 
they are assigned to. Global diagnosis is obtained by 
defining a proper communication scheme among 
agents. This approach has been implemented for 
instance by Letia et. al. (2000), Fabre et. al. (2001), 
the DIAMOND project (Albert et. al., 2001), and 
Koscielny (2004). The distributed diagnosis 
framework described in this paper aligns with this 
first approach. 

The other possible approach to distributed fault 
diagnosis is to bring together the diagnosis expertise 
of different methodologies (the agents). Isermann 
and Ballé (1997) underline the fact that a single 
diagnosis method is inadequate for matching all 
challenges posed by a complex system. The analysis 
may be performed at the whole system level or at a 
lower level, i.e. taking into account subsystems 
and/or even single components such as a single 
sensor or a single actuator. In this case, the 
complexity burden is much larger as a central 
supervisor is needed to determine first the level of 
analysis and second the panel of methodologies used 
for each considered subpart of the system. A recent 
implementation of this approach is MAGIC project 
(Köpen-Seliger et. al., 2003; Lesecq et. al., 2003). 
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The methodologies mentioned above lack a coherent 
methodology that partitions the monitored system 
into a set of subsystems such that the independence 
level of local diagnosis process for each subsystem is 
maximal and such that the communication between 
different subsystems, required for formulating global 
diagnosis, is minimal. The described methodology 
fulfils the previous conditions as follows. It partitions 
the monitored system into fully independent 
subsystems. It also insures minimal borders between 
different subsystems which imply minimal 
communication. An important contribution of the 
paper is that it provides the described methodology 
with theoretical support. 

The content of the paper is organized as follows. 
Section 2 briefly sketches the distributed fault 
diagnosis framework inside which the described 
partitioning methodology is used. Section 3 presents 
the feedback loops replacement methodology that 
allows a system model with feedback to be 
transformed into a model without feedback, yet 
preserving the temporal information encoded by the 
replaced feedback loops. This is needed as the 
partitioning methodology may be applied only on 
system models with no feedback. Section 4 brings in 
the methodology used to build the partitions of the 
monitored systems. Last section, Section 5, 
summarizes the paper contributions and gives a 
possible future research direction. 



2. DESCRIPTION OF THE DISTRIBUTED 
DIAGNOSIS FRAMEWORK 


The complexity of a system resides in the number of 
its basic components, actuators and sensors. The 
causal model of a system may be encoded as a 
directed graph (digraph) where vertices represent the 
available actuators and sensors readings, and edges 
represent the causal links between these 
measurements. The complexity of the system is 
reflected in the complexity of the associated digraph. 
The described distributed fault diagnosis framework 
basically (i) considers the causal model of the system 
as a map, (ii) partitions this map into edge disjoint 
regions separated by borders formed by vertices, and 
(iii) assigns a dedicated agent to each region (Fig. 1). 
For step (ii), notice that each region may be treated 
recursively in the same manner as the initial map, 
therefore inducing a local hierarchy of agents. The 
local expertise of the agents, as well as the 
interaction between them is used to robustly detect 
and isolate the faults in the system. The use of this 
distributed scheme allows maintaining the focus only 
on those regions of the map that are affected by 
faults. Hence, monitoring a complex system becomes 
a tractable problem. 

In order to comply with the natural requirement for a 
as small as possible diagnosis computational time, 
the previous partitioning is required to satisfy next 
conditions: (i) the agents should be able to 
independently asses the state of the system in the 
assigned area, and (ii) the interaction between 
different agents should be kept as small as possible. 

The complexity of the interaction between two 
agents is given by the number of vertices located on 
the borders between the corresponding regions. 


agent 1 agent 2 

agent 3 agent 4 

agent 5 

 

Fig. 1. Partitioning the causal model of a system 

The first condition is fulfilled by using the d-
separation criterion, introduced in (Pearl and Paz, 
1985; Pearl and Verma, 1986), to split the map in 
separate regions. The criterion offers a parallel 
between the causal independency and the vertex 
separation in digraphs. If X, Y and Z represent three 
vertex subsets in a causal model, the d-separation 
criterion is able to determine if �knowing Z renders Y 
irrelevant to X�. For the proposed partitioning, if X 
and Y represent the vertex subsets of two 
neighbouring regions, and if Z represents the vertex 
subset that constitutes the border between the two 
regions, then the d-separation criterion always holds, 
i.e. the regions X and Y are causally independent. 

An important drawback of the d-separation criterion 
is that it can be applied exclusively on acyclic 
digraphs. That is why it is needed a methodology that 
allows cyclic causal models to be transformed into 
acyclic models. The transformation needs to be 
carried out without actually losing the structural and 
behavioural information given by feedback. This 
methodology is described in Section 3. 

The second condition is fulfilled by using the 
multilevel hypergraph partitioning (Karypis, 2002). 
The multilevel partitioning paradigm is based on a 
very simple idea. First, the original hypergraph 
undergoes a sequence of successive approximations 
that represent smaller and smaller sized versions of 
the original configuration until the hypergraph is 
reduced to a few tenths of vertices. This is called the 
coarsening phase. At this point, some algorithms are 
used to compute a partitioning of the current form of 
the hypergraph. This second phase is called the initial 
partitioning phase. The final phase is to use the 
partitioning of the smallest hypergraph to derive the 
partitioning of the original hypergraph by successive 
projections of the current partition to the next level 
finer approximation of the original hypergraph. The 
last phase is called the uncoarsening and refinement 
phase. 

The analyzed causal model is transformed into a 
hypergraph so that the following equivalence holds: 
the causal model has a minimal number of vertices 
on the partition borders if and only if the equivalent 
hypergraph has a minimal number of hyperedges cut 
by the partition borders. 



     

The previous multilevel partitioning hypergraph 
algorithm has been implemented by its authors into 
an application called hMeTiS. The application, 
together with a User Manual, can be downloaded 
from http://www-users.cs.umn.edu/~karypis/hmetis/ 
index.html. 



3. FEEDBACK LOOPS REPLACEMENT 
METHODOLOGY 


The section describes a feedback loops replacement 
methodology used to obtain an acyclic causal model 
from a cyclic causal model. The most important 
property of the obtained acyclic causal model is that 
it reflects not only the structural properties of the 
original cyclic causal model, but also its behaviour in 
time. The initial model is represented as a digraph 
where vertices stand for the sensor measurements at 
the initial time-step of the analysis, and edges stand 
for cause-effect relationships between them. In order 
to reflect the behaviour of the system in time, this 
initial model is replicated at each time step, i.e. when 
new sensor measurements are available. The vertices 
of the new replica correspond to the values of the 
sensor measurements at the current time-step. New 
edges, which reflect cause-effect relationships 
between vertices in the current replica of the model 
and vertices in the previous replicas, must be added. 
As it is detailed later in the section, adopting models 
built in the previous manner, offers the opportunity 
to replace a feedback loop of the system with an 
acyclic substructure by unfolding it in time. 
However, all structural information encoded by the 
cyclic model and all temporal information given by 
feedback are preserved. It is to be noticed that, as the 
number of the considered time-steps increase, some 
vertices of aged replicas of the initial model become 
causally irrelevant to the other vertices in the model 
and, therefore, they can be eliminated. The interval 
of time for which the causal dependencies between 
older vertices and newer vertices are relevant is 
called the relevant time-window span (Bocaniala, 
2004). Thus, the model is dynamic in both positive 
and negative sense, i.e. vertices may be added and 
vertices may be eliminated as well. 

The first subsection presents an algorithm that 
always provides an edge cut set for the feedback 
loops in a cyclic causal model. The algorithm uses 
the distribution of feedback loops on levels given by 
the level partitioning (Viswanadham et al., 1987). On 
the basis of the algorithm in the first subsection, the 
second subsection presents the algorithm for building 
the acyclic causal model of a cyclic causal model. 


3.1 The minimal edge cut set of a feedback loop 

Viswanadham et al. (1987) describe in their book an 
algorithm for structuring a digraph based on the 
reachability relation on the digraph vertex set. The 
reachability relation R is defined as follows. Given 
two vertices vi and vj, vi R vj if and only if there is a 
directed path from vi to vj. Structuring a digraph with 
respect to the reachability relation actually builds a 

partition on the vertex set into equivalence classes 
called levels. Balakrishnan (1997) defines a strongly 
connected component (SCC) of a digraph as a 
maximal set of interconnected feedback loops. It 
follows that the set of the SCCs of a causal model 
concentrates the whole feedback structure of the 
model. The level partitioning algorithm insures that 
there is only one SCC per level, i.e. the maximum 
possible number of SCCs equals the number of 
levels. Therefore, given the level partitioning of a 
cyclic causal model, the task of finding an edge cut 
set that breaks all loops in the system reduces to 
finding an edge cut set for each SCC given by the 
level partitioning. 

In the following, the algorithm that always provides 
an edge cut set for a SCC is given. The edge cut set 
will be required to be minimal in the sense that, if 
possible, each loop is cut on only one edge. Notice 
that there may be cut edges that break more than one 
loop. The most favourable situation is when the 
number of this kind of edges is maximal. The 
algorithm that computes the minimal edge cut set 
(MECS) for a SCC uses the breadth-first search 
(BFS) procedure when traversing the SCC. The 
MECS for the whole causal model is the reunion of 
the MECS computed for all its SCCs. 

Algorithm 1 (The minimal edge cut set of a SCC) 

Step 1. Choose randomly one vertex r in the SCC and 
consider it the root of the BFS tree. Build the BFS 
tree. 

Step 2. An edge that does not belong to the BFS tree 
is called a left-out edge. For each layer of the BFS 
tree, for each vertex v on that layer, for each left-out 
edge e originating from v do the following. 

Step 2.1. Check all directed paths containing v and e 
if (i) do not contain any edge in the MECS, and if (ii) 
contain at least an ancestor w of v in BFS tree. If the 
previous two conditions are satisfied, then there is at 
least one loop, i.e. the loop containing v, e and w, 
which is not yet cut. By adding edge e to MECS this 
loop, which contains v, e and w, and possibly other 
loops will be cut by e. 

Step 2.2. Check if MECS remains minimal after 
adding e and eliminate the redundant cut edges. An 
edge from MECS is called redundant if the loops that 
it cuts are already cut by other edges from MECS.□ 

Theorem 1 Given a cyclic causal model, Algorithm 2 
provides always a minimal edge cut set for each 
SCC. 

Proof First of all, notice that each loop in the 
considered SCC contains at least one left-out edge. 
The justification is immediate. The BFS tree from 
Step 1 is acyclic. If the left-out edges are added to 
this tree then the obtained graph is the original SCC. 
The loops in original SCC have been �restored� by 
adding the left-out edges. It follows that MECS 
represents a subset of the left-out edges set. What is 
left to be proven is that the MECS provided by 
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Algorithm 1 really cuts all loops in the SCC and that 
it is minimal in the defined sense. 

Let denote by BFS(t) the BFS tree with vertex t as 
root. Notice that, if the edge e in Step 2.1 of the 
algorithm is v→u, all directed paths containing v and 
e represent directed paths in BFS(u). Using this 
observation, Step 2 may be interpreted as follows: if 
there is an ancestor w of v in BFS(r) from Step 1,  
such that w belongs to BFS(u) and such that the 
directed path between root u and w in BFS(u) does 
not contain any edge from MECS, then edge e is 
added to MECS. If each directed path in BFS(u) 
between u and one of its ancestors w in BFS(r) 
contains an edge f from MECS, then the loop 
containing v, e and w and possibly other loops are 
already cut by f. The previous discussion proves that, 
if there is any loop that contains edge e and that it is 
not yet cut by other edge in MECS, this loop will be 
cut by adding e to MECS in Step 2.1. It follows that 
MECS will cut all loops in the considered SCC. 
Moreover, MECS is already minimal in the sense 
that an edge enters MECS if and only if a loop not 
yet cut is detected. What is left to be investigated, so 
that MECS is minimal in the sense defined at the 
beginning of the subsection, is the elimination of 
redundant edges from Step 2.2. 


 

s 

a 

b 

c 

d 

g 

h 



Fig. 2. Two possibly redundant edges in BFS(s) tree 

Let denote by AN(v) the ancestors of v in BFS(r) and 
by EL(u) (from eliminated) all vertices s in BFS(u) 
such that the directed path between u and s is cut by 
an edge from MECS. Then the condition for edge e 
to enter MECS may be expressed as 


  

 

,

,  ( )

( ) ( ) ( )

e left - out edge from SCC

e v u v BFS r

e MECS AN v BFS u EL u


  

     

  (1) 



The redundant cut edges mentioned in Step 2.2 may 
appear in a BFS(s) tree, s≠r, as shown in Fig. 2. The 
directed path from s to d contains both edges g and h. 
The condition s≠r is given as both g and h represent 
left-out edges and, by definition, BFS(r) does not 
contain any left-out edge. As detailed above, edges g 
and h are cut with the purpose of disconnecting a and 
respectively c from the vertices in AN(a) respectively 
AN(c). When both g and h appear on the directed 
path from s to d in the BFS(s) tree, s≠r, the fact that 
they are cut may be interpreted as disconnecting a 
and respectively c from the vertices in AN(a) ∩ 
SubBFS(s,b) respectively AN(c) ∩ SubBFS(s,d), 
where SubBFS(s,t) represents the subtree of BFS(s) 
having the root t. If edge g is fixed and for any edge 
h and any vertex s 


 

(1) g and h belong to the path between

s and d in BFS(s)

(2) AN(a) SubBFS(s,b) AN(c) SubBFS(s,d)  
(2) 


then g may be eliminated from MECS in Step 2.2. It 
follows that MECS is minimal in the sense defined at 
the beginning of the subsection.□ 

Corollary 1 Given a cyclic causal model, there is 
always a minimal edge cut set (MECS) that renders 
the causal model acyclic. 

Proof Theorem 1 insures that there is always a 
MECS for each SCC of a cyclic causal model. It 
follows that the reunion of these MECS, i.e. the 
MECS of the cyclic causal model, always exists and 
it renders acyclic the initial cyclic causal model.□ 


3.2 Transforming a cyclic causal model into an 

acyclic model by feedback loops unfolding in 
time 


Given the algorithm in the previous subsection, it is 
now possible to give an algorithm that computes the 
acyclic causal model of a cyclic causal model by 
performing feedback loop unfolding in time. The 
algorithm must be provided with the relevant time-
window span constant cmax (see the introductory part 
of section). 

Algorithm 2 (Feedback loops unfolding in time for 
obtaining an acyclic causal model corresponding to a 
cyclic causal model) 

Step 1. If the analyzed causal model is cyclic, then 
first obtain the initial model (see the introductory part 
of this section) by eliminating the minimal edge cut 
set (MECS) from the cyclic causal model. 

Step 2. Let t be the initial time-step. If St is an 
element of the initial model, then its instance at the i-
th time-step, i=1, �, cmax, is noted as St+i*T. The 
possible connections in the final acyclic model are 
detailed in the following. 

Step 2.1. All vertices St+j*T, 0j<i, will have an 
outgoing connection with St+i*T. 




     

Step 2.2. If Ut is another element of the initial model, 
Ut≠St, so that St and Ut are connected in the initial 
model, then all pairs St+i*T and Ut+i*T will have the 
same type of connection. 

Step 2.3. Finally, for each edge U→S or S→U in 
MECS, the connection Ut+(i-1)*T→St+i*T or 
respectively St+(i-1)*T→Ut+i*T is added to the model.□ 

Theorem 2 Each vertex in the acyclic causal model 
obtained by applying Algorithm 2 to a cyclic causal 
model, receives all input values that it is supposed to 
receive and provides all output values that it is 
supposed to provide. 

Proof The proof represents an analysis of Algorithm 
2. First, the connections between vertices at the i-th 
step must be identical with the connections that exist 
in the initial model. This is insured by Step 2.2. The 
loss of connectivity information caused by the 
feedback loop replacement is recovered via 
unfolding in time, Step 2.3.□ 

Corollary 2 The acyclic causal model obtained by 
applying Algorithm 2 to a cyclic causal model 
preserves all structural information and all temporal 
information given by the initial cyclic causal model. 

Proof It is an immediate consequence of Theorem 
2.□ 



4. PARTITIONING METHODOLOGY 

This section presents the algorithm that performs the 
proposed partitioning. The number k of regions must 
be decided by the user. The decision must take into 
account the fact that the whole set of vertices is 
going to be distributed inside each region of the 
partition as well as on the borders of the partition. 
The goal is to obtain a partition that (i) has a minimal 
vertex-cut set and that (ii) has all pairs of 
neighbouring regions causally independent (d-
separated). The uncertainty of this decision consists 
in the fact that the algorithm used guarantees 
minimal borders, but neither it is able to estimate the 
number of vertices located on them nor it is able to 
estimate how many vertices belong to each partition 
member. Future research need to find methodologies 
able to eliminate this uncertainty. One possible 
direction is to insert principles from algorithms that 
provide minimal d-separation sets (Tian et. al., 
1998) into multilevel partitioning algorithm. 

Algorithm 3 (Partitioning a causal model into 
minimally separated and causally independent 
regions) 

Step 1. If the input causal model CM contains 
feedback loops, use Algorithm 2 to perform feedback 
loops replacement in order to obtain the 
corresponding acyclic causal model (ACM). 

Step 2. Compute the moral graph MG corresponding 
to ACM. The moral graph of an acyclic digraph is 
built by connecting first all pairs of vertices that are 
parents of the same vertex and, then, giving up edge 

orientation (Lauritzen et. al., 1990). The �morality� 
of the obtained graph is insured by the fact that all 
vertices that share a child vertex are now �married� 
by connecting edges. 

Step 3. Transform the MG graph into a hypergraph 
HG so that (i) the edges of MG represent the vertices 
of HG and (ii) each hyperedge h of HG corresponds 
to a vertex v in MG as follows, 


       
{  /  is an incoming/outgoing

edge in/from }

h e MG e

v

 
       (3) 


Step 4. Use the hMeTiS application, with the k 
parameter decided by the user, to partition HG into k 
parts. For more details see (Bocaniala, 2004). 

Step 4.1. The vertex-cut set in MG corresponds to the 
hyperedge-cut set of HG. 

Step 4.2. The regions in the MG partition are 
delimited using the edge labelling of MG provided by 
the HG partition. The vertex-cut set on MG 
determines a partition of ACM into causally 
independent regions.□ 

Theorem 3 Each hyperedge-cut set in HG has a 
correspondent vertex-cut set in MG of the same size. 

Proof When partitioning HG using hMeTiS in Step 4 
of Algorithm 3, each hyperedge h in HG may or may 
not be cut by the provided partition. In the following 
these two possible situations are analyzed. 

If a hyperedge h in HG is cut by the HG partition 
provided by Step 4, this fact has the following 
interpretation. The elements in h span more then one 
region of the HG partition. But, the elements in h are 
all edges in MG with one end in a vertex v from MG 
(Eq. 3). Since the partition regions in MG are 
determined by the edge labelling provided for HG 
(Step 4.2), it follows that the edges in MG with one 
end in v, span more than one region of the MG 
partition. It follows that v represents a vertex located 
on the borders of the partition in MG. 

If a hyperedge h in HG is not cut by the HG partition 
provided by Step 4, this fact has the following 
interpretation. The elements in h span one single 
region of the HG partition. But, the elements in h are 
all edges in MG with one end in a vertex v from MG 
(Eq.3). Since the partition regions in MG are 
determined by the edge labelling provided for HG 
(Step 4.2), it follows that the edges in MG with one 
end in v, span one single region of the MG partition. 
It follows that v represents a vertex located inside 
one of the partition regions of MG. 

From the previous two analyses, it results that each 
hyperedge h in the hyperedge-cut set provided by 
Step 4 has a corresponding vertex v in the edge-cut 
set of MG. It follows that the claim in the theorem 
text is true, i.e. each hyperedge-cut set in HG has a 
correspondent vertex-cut set in MG of the same 
size.□ 




     

Corollary 3 Given a causal model of a system, 
Algorithm 3 provides a partition of its acyclic form 
that (i) has a minimal vertex-cut set and that (ii) has 
all pairs of neighbouring regions causally 
independent, i.e d-separated by the minimal vertex-
cut set. 

Proof This corollary is an immediate consequence of 
Theorem 3. The hyperedge-cut set of HG provided 
by hMeTiS is minimal (Step 4). Theorem 3 proved 
that the vertex-cut set in MG induced by the 
hyperedge-cut set in HG have the same cardinal. It 
follows that the induced vertex-cut set in MG is also 
minimal. 

One vertex set separating two regions in MG will d-
separate the two regions in the acyclic form ACM of 
the original causal model CM (Lauritzen et. al., 
1990). It follows that the vertex-cut set induced on 
MG by the hyperedge-cut set in HG will d-separate 
each pair of neighbouring regions in ACM.□ 



5. CONCLUSIONS 

The paper described a novel methodology for 
partitioning complex system for fault diagnosis. The 
methodology partitions the causal model associated 
with the monitored system into minimally vertex-
separated and causally independent (d-separated) 
regions. 

The fact that each region is causally independent by 
the rest of the model allows performing the diagnosis 
of that region locally, without needing to 
communicate with the rest of the model. This 
property allows maintaining the diagnosis focus 
exclusively on those regions of the map that are 
affected by faults. Hence, monitoring a complex 
system becomes a tractable problem. 

Moreover, if the causal independence property is 
affected by faults, the communication between 
different regions needed has a minimal 
computational complexity. This is due to the fact that 
communication takes place via partition borders, 
which are minimal. 

The proposed partitioning methodology has the 
potential to be used for fault-tolerant control 
purposes. Fault-tolerant control is concerned with 
making a controlled system able to maintain control 
objectives, despite the occurrence of a fault. For 
instance, if faults that produce structural changes that 
do not require system shutdown occur, the causal 
model of the system and the associated distributed 
fault diagnosis system also suffer modifications and 
may be updated by re-partitioning using the same 
algorithm. 
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