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Abstract: To deliver complex functionalities in a cost effective manner, distributed 
manufacturing systems should ideally be based on standard interoperable components and 
be flexible and easily extensible. At the same time, systems must be demonstrably safe 
and reliable. In this paper, we argue that to balance these conflicting demands effective 
safety analysis techniques are required that partly automate and simplify off-line safety 
assessment. We outline a technique that automates the construction of fault trees and 
FMEAs and explain how this technique can be repeatedly applied in the course of the 
design life-cycle on functional and architectural models to enable continuous assessment 
of evolving designs. Finally, we discuss the issue of re-use of safety analyses and give 
examples of how such reuse simplifies the assessment. Copyright © 2005 IFAC 
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1. INTRODUCTION AND BACKGROUND 

 
In many engineering and manufacturing industries, 
the introduction of distributed embedded systems 
presents opportunities for building cost-effective and 
flexible design solutions. However, the introduction 
of such systems in safety critical applications must 
be carefully considered. In such systems, the 
integration of functions and its implications, i.e. 
interaction, interoperation and sharing of resources, 
raise serious safety concerns which include the 
possibility of common cause failure and unpredicted 
dependent failure of critical functions caused by 
malfunction of non-critical functions. Difficulties are 
also caused by increasing scale and complexity. The 
distribution of functions in such systems may indeed 
be very complex while dynamic reconfigurations 
may be necessary to meet demands for process 
changes in real-time. Complete and rigorous safety 
analyses must, therefore, cover every reconfiguration 
even when this represents only minor changes. 
Similarly, new safety analyses must be performed 
every time the design of the system evolves, e.g. to 

incorporate new requirements, in order to capture 
correctly any new and potentially hazardous 
dependencies between functions. Two related 
questions may be asked at this point concerning our 
ability to perform safety analysis on complex 
distributed systems: Can complete and rigorous 
safety analysis of such systems be achieved within 
the constraints of modern production? And, if it can, 
to what extend could safety analyses produced at one 
stage of the design be re-used to enable the analysis 
of subsequent versions of an evolving design? 
 
In this paper, we argue that the key to addressing 
successfully the first question is introducing some 
degree of automation in safety analysis. In section 2, 
we illustrate how this can be achieved in the context 
of HiP-HOPS (Hierarchically Performed Hazard 
Origin and Propagation Studies) a new technique for 
semi-automatic construction of fault trees and 
FMEAs (Papadopoulos, et al., 2001). In sections 3 
and 4, we show how application of this technique can 
be effectively iterated to enable management of 
design changes in safety analysis. In section 3 we 



     

discuss application of HiP-HOPS to abstract 
functional models, while in section 4 we discuss 
application to more detailed architectural models. In 
the respective sections, we also discuss the issue of 
re-use. As a result of this discussion, we identify two 
types of reuse which together with automation in the 
context of HiP-HOPS simplify the analysis of 
complex systems: re-use of local safety analyses for 
functions or components that have well-defined 
operational profiles, and reuse of patterns that 
describe the failure behaviour of complex 
components (or fault tolerant schemes) designed to 
exhibit certain failure behaviour. We also identify the 
limitations of such re-use and, finally, conclude by 
pointing out directions of further work. 
 

2. HiP-HOPS 
 

HiP-HOPS is a model-based semi-automatic safety 
and reliability analysis technique. In HiP-HOPS, a 
structural model of the system (hierarchical if 
required to manage complexity) is first annotated 
with formalised logical descriptions of component 
failures and then used as a basis for the automatic 
construction of fault trees and FMEAs for the 
system. Application of the technique can start once a 
concept of the system under design has been 
interpreted into an engineering model which 
identifies components and material, energy or data 
transactions among components. Suitable models for 
the application of the technique include functional 
block diagrams, abstract engineering schematics, 
piping and instrumentation diagrams, hardware 
descriptions, data flow diagrams, and other models 
commonly used in engineering design. 
 
HiP-HOPS can be performed on abstract or more 
detailed models of the system as these are produced 
and refined in the course of the design life-cycle. 
This of course creates opportunities for re-use of 
earlier analysis and the ability to achieve a consistent 
and continuous assessment in the centre of which lies 
the design of the system itself. At the early stages of 
design, the model that provides the basis for the 
analysis can be a block diagram which shows the 
functional composition of the system, input/output 
transactions among functions and the recursive 
refinement of functions into networks of lower level 
sub-functions. Later on, when functions are allocated 
to hardware, the model becomes a representation of 
the physical architecture of the system which shows 
components such as sensors, actuators, busses and 
programmable controllers enclosing networks of 
tasks running upon those controllers. 
 
The first step in the analysis of such models in HiP-
HOPS is the establishment of the local failure 
behaviour of each component (i.e. function, 
hardware or software element) in the model as a set 
of logical failure expressions which show how output 
failures of the component can be caused by internal 
malfunctions and deviations of the component 
inputs. A variant of Hazard and Operability Studies 
(HAZOP) is used to identify plausible output failures 
such as the omission, commission, value (hi, low) or 

timing (early, late) failure of each output and then to 
determine the local causes of such events as 
combinations of internal component malfunctions 
and similar types of input failures. Once this analysis 
has been completed for all components, and the 
derived failure expressions have been inserted into 
the model, the structure of the model is then used to 
automatically determine how the local failures 
specified in those expressions propagate through 
connections in the model and cause functional 
failures at the outputs of the system. This global view 
of failure is captured in a set of fault trees which are 
automatically constructed by traversing the model 
and by evaluating the local failure expressions 
encountered during the traversal.  
 
The synthesised fault trees are interconnected and 
form a directed acyclic graph sharing branches and 
basic events that arise from dependencies in the 
model, e.g. common inputs which may cause 
simultaneous dependent failure of hypothetically 
“independent” channels in the model. Classical 
Boolean reduction techniques and recent algorithms 
for fault tree analysis that employ Binary Decision 
Diagrams (BDDs) are applicable on this graph. Thus, 
qualitative analysis (e.g. of abstract functional 
models) or quantitative analysis (e.g. calculation of 
system-level failure rates from known failure rates on 
component-level) can be automatically performed on 
the graph to establish whether the system meets its 
safety or reliability requirements. In recent work we 
have shown that the logic contained in the graph can 
be automatically translated into a simple table which 
is equivalent to a classical multiple failure mode 
system FMEA (Papadopoulos, et al., 2004).  

 
3. ITERATION OF HiP-HOPS ON ABSTRACT 

FUNCTIONAL MODELS AND RE-USE 
 

In HiP-HOPS, human interpretation of the 
synthesised fault trees and FMEA helps to initiate 
useful design iterations. To gain maximum value, 
application of the technique should start as early as 
possible when abstract functional models of the 
system become available. The objectives of abstract 
analysis are two-fold: (a) assist the early 
identification of design flaws; (b) point out critical 
functions and guide the design of such functions. 
Satisfaction of these two objectives would mean that 
expensive design iterations needed to correct errors 
late in the design could be avoided while an effective 
design approach could be established in which the 
design of critical functions (and safety measures for 
these functions) could be driven by the result of 
semi-automatic HiP-HOPS analyses performed on 
increasingly refined models of the system. 
 
Abstract functional models typically developed at 
early design stages do not refer to particular 
hardware architectures, distribution of functions or 
communication of information. They do identify, 
though, input, processing and actuator functions, and 
show how interaction among these functions results 
in the provision of system functions. In an advanced 
steer-by-wire system currently designed by Volvo 
with the aid of the HiP-HOPS tool (see section 5), for 



     

instance, such functions include the control of 
steering, the generation of feedback torque on the 
steering wheel, and the reception and transmission of 
information from and to controls in the steering 
wheel and other locations. 
 
In HiP-HOPS, functional models are first annotated 
with information about the potential failure 
behaviour of functions. In the absence of references 
to particular hardware, analysts can assume that each 
function potentially exhibits all classes of output 
failures typically examined in the course of the 
analysis (i.e. omission, commission, value and timing 
failures). Failure expressions are then constructed to 
relate each such output failure to a respective failure 
mode of the function and deviations of function 
inputs that can be caused by output failures of other 
functions further upstream in the model.  For a 
function X that receives two inputs I1 and I2 and 
generates an output O, an expression for example 
may define that an omission of O (Omission-O) can be 
caused by an omission failure of the function 
(OmissionX) or a simultaneous omission of both 
inputs (Omission-I1, Omission-I2): i.e.: 

 
Omission-O=OmissionX or Omission-I1 and Omission-I2 

  
From such expressions describing the potential local 
failure behaviour of functions, in HiP-HOPS it is 
possible to automatically generate a set of system 
fault trees and an FMEA which show how potential 
failures of input, processing and actuator functions 
cause system level effects, e.g. in a steer-by-wire 
system the omission or deviation of steering, driver 
feedback and other critical system functions. A 
classification of the severity of those effects into 
marginal and catastrophic can then help to identify 
the criticality of causes, i.e. the criticality of failures 
of input, processing and actuator functions. These 
results in turn can guide the design of these 
functions. Our experience from several rounds of 
analysis and interpretation of results in the steer-by-
wire case study have suggested two general rules that 
can be applied to directly interpret results from this 
type of analysis into useful design guidelines:  
 
a) When the analysis indicates that the omission of a 

function has only marginal effects while 
commission and value failures have catastrophic 
effects, a design recommendation should be made 
to design the function in a way that it “fails 
silent”. This in turn can lead designers to the 
identification of new degraded modes in which 
non-critical functions may fail silent with only 
marginal effects on the system.  

 
b) When the analysis indicates that all potential 

failure modes of a function have catastrophic 
effects on the system then a design 
recommendation should be made to allocate the 
function to a fault tolerant architecture.  

 
Application of these guidelines can give new insight 
into the design of the system. A new system state-
chart for example can be constructed to show how 
graceful transition to the identified degraded modes 

could be achieved and, driven by these results,  
design iteration can take place to incorporate these 
new degraded modes in an improved version of the 
system model. Further HiP-HOPS studies can be 
performed on subsequent refinements of the 
functional model and these can take place before the 
decision to proceed with the architectural allocation 
of functions to hardware. In the context of such 
iteration, the failure annotations of functions that 
have not been influenced by design changes can be 
directly re-used. If a function has changed, however, 
i.e. if it receives different inputs, performs a different 
transformation on inputs or produces different 
outputs, then the failure annotations of the function 
must be revised. To illustrate this, let us take as an 
example a function X that operates on input I and 
generates an output O. The following two 
annotations describe the local failure behaviour of 
the function: 
 

Omission-O=OmissionX or Omission-I 
Commission-O= CommissionX or Commission-I 

 

Let us now also assume that application of HiP-
HOPS has shown that CommissionX has catastrophic 
effects on the system while OmissionX has only 
benign effects and can be tolerated. In response to 
these results, the design of X is revised to include a 
self-monitoring mechanism at the output. This 
mechanism detects a condition that would otherwise 
have been a Commission-O and, in return, forces X to 
fail silent. In this new design, a CommissionX and the 
consequent Commission-O  become implausible and 
can therefore be removed from the analysis as a 
potential cause and local effect of failure of X 
respectively. The failure behaviour of the modified 
function is now described by the following single 
expression: 
 

Omission-O= OmissionX or Omission-I or Commission-I 
 
Such revisions of failure annotations must take place 
to ensure that the analysis reflects changes in the 
functional design. However, such changes would 
typically be limited to areas of the design that the 
analysis has pointed out to be critical. Hence, 
substantial re-use of failure annotations, and 
therefore simplification of the analysis, can be 
expected in every iteration of the analysis process. 
    

4.  ITERATION OF HiP-HOPS ON DETAILED 
ARCHITECTURAL MODELS AND RE-USE 

 
At some point in the development of a design, 
functions are allocated to hardware components. 
Input functions are allocated to sensors, output 
functions to actuators and processing functions are 
distributed on control processors which are typically 
connected over one or more busses. Assuming that 
information about the failure modes of these 
components is available, HiP-HOPS studies at this 
stage can become much more detailed and 
quantitative in nature making use of available 
information about component failure modes and 
failure rates.  
 



     

The failure annotations of components are now 
extended to include the failure modes of each 
component and any failure rates if available. Such 
failure modes typically include electrical and 
mechanical failures caused by wear or environmental 
conditions for which the component is not qualified. 
The failure expressions that link component output 
failures to logical combinations of input failures and 
internal component malfunctions now make 
reference to these specific failure modes.  
 
In hierarchical models that record the decomposition 
of systems, failure annotations can also be inserted at 
subsystem level to collectively capture the effect of 
failure conditions that do not necessarily require 
examination at basic component level. If, for 
example, a subsystem as a whole is susceptible to 
some environmental disturbance like electromagnetic 
interference, then the effects of this condition can be 
directly specified with a failure annotation at 
subsystem level. This annotation, for example, could 
define that all outputs of the subsystem are omitted 
in the event of electromagnetic interference. Such 
annotations would typically complement other 
annotations made at the level of the enclosed 
components to describe aspects of failure behaviour 
at this level (e.g. the mechanical and electrical failure 
modes of each component). In general, when 
examining the causes of a failure at an output of a 
sub-system, the fault tree synthesis algorithm creates 
a disjunction between any failure logic specified at 
sub-system level and logic arising from the enclosed 
lower levels. Thus, by enabling causes of failure to 
be described at both component and sub-system 
level, it becomes possible to avoid repetition of data 
that would otherwise be required to describe factors 
affecting entire sub-systems. This feature, we feel, 
makes HiP-HOPS a truly hierarchical approach to 
the analysis of complex systems. 
 
Component failure rates, if provided at this stage, are 
embedded in the structure of the automatically 
synthesised fault trees and can be used to perform 
probabilistic calculations aimed at prediction of the 
reliability of the system. Note, though, that credible 
failure rates (often not available) are not essential to 
produce useful results. Qualitative application of the 
technique can still produce useful results. The logical 
reduction of the synthesised fault trees into minimal 
cut-sets and FMEA, for instance, can indicate single 
points of failure in the system and point out potential 
design weaknesses. This, however, should not 
conclude the analysis process. Indeed, design 
changes prompted by interpretation of the current 
analyses may correct existing problems but can also 
introduce new unintended errors. Thus, re-
establishment of the failure behaviour of the system 
via iteration of HiP-HOPS should follow such design 
changes. Clearly, our ability to iterate fast this 
process will ultimately also define our ability to 
manage effectively the evolution of the design in 
safety analysis. The automated algorithms of HiP-
HOPS for the synthesis of fault trees and FMEAs can 
clearly help in this direction. However, our ability to 
effectively apply the method on an evolving design is 
also heavily dependent upon the ability to re-use the 

failure annotations that are required by HiP-HOPS at 
component level.   
 
4.1 Reuse of component safety analyses 
 
It can be easily established that the failure 
annotations of a component can be directly re-used in 
the same application as long as design changes do 
not influence the function of the component, i.e. the 
component receives the same inputs and performs the 
same operation. It is also useful to ask at this point 
whether such annotations could be re-used across 
different applications. This type of reuse would be 
more powerful and would clearly help to further 
simplify safety assessment in the context of HiP-
HOPS. To address this question let us examine for a 
moment the failure annotations of the two-way 
computer controlled valve illustrated in Figure 1. The 
figure shows the valve as it would typically be 
illustrated in a plant diagram and records the results 
of analysis for the component in two tables that 
define valve malfunctions and output deviations 
respectively. In normal operation, the valve is 
normally closed and opens only when the computer 
control signal has a value of a logical one (1). Valve 
malfunctions include mechanical failures such as the 
valve being stuckOpen or stuckClosed, and blockages 
caused by debris such as blocked and partially-
Blocked. For each malfunction, the analysis records 
an estimated failure rate while the effects of those 
malfunctions on the output of the valve can be seen 
in a second table that lists output deviations.  
  

 
 
Valve Malfunctions 
Failure mode Description Failure 

rate 
Blocked e.g. by debris 1e-6 
partiallyBlocked e.g. by debris 5e-5 
stuckClosed Mechanically stuck 1.5e-6 
stuckOpen Mechanically stuck 1.5e-5 
   
 
Deviations of Flow at Valve Output 
Output 
Deviation 

Description Causes 

Omission-b Omission of 
flow 

Blocked or 
stuckClosed or 
Omission-a or  
Low-control  

Commission-b Commission 
of flow 

stuckOpen or 
Commission-a 
or Hi-control 

Low-b Low flow partiallyBlocked  
or Low-a 

Hi-b Hi flow Hi-a 
Early-b Early flow Early-a or 

Early-control 
Late-b Late flow Late-a or     

Late-control   

Fig.1. Failure annotations of a computer-operated 
two-way valve 

 

 a  b 

 control 



     

Here, we can see that an omission of the output flow 
(Omission-b) can be caused by a number of 
malfunctions such as valve blocked and stuckClosed 
or by input failures such as omission of input flow 
(Omission-a) or a value failure in the control signal 
(Low-control). Similarly, commission of the output 
flow (Commission-b) can be caused by a valve 
malfunction (stuckOpen), commission of input flow 
(Commission-a) or a value failure in the control 
signal (Hi-control). The table also provides 
expressions that define the causes of value and 
timing failures at the output of the valve.  
 
In this analysis, there is an implicit assumption that 
point b is always the output of the valve which may 
be true in a particular system configuration but not in 
general. To account for flows in the opposite 
direction, we also need to consider point a as an 
output, which in practice means that the table has to 
be extended to include deviations of point a. The 
symmetry in the design of the valve means that 
mechanical replication is only required to complete 
this specification of how the valve behaves in 
conditions of failure. This specification is generic in 
the sense that it does not contain references to the 
context within which the valve operates. Failure 
expressions make references only to component 
malfunctions and input/output ports of the 
component. The failure behaviour described in these 
expressions has been derived assuming a simple 
operation that we expect the component to perform 
in every application (valve is normally closed unless 
the value of control signal is 1). For these reasons, 
the specification of Fig.1 provides a template that 
could be re-used in different models and contexts of 
operation, perhaps with some modifications, e.g. on 
failure rates, to reflect a different environment. We 
must stress, thought, that this type of reuse is only 
possible because the valve has a small number of 
well-defined interface points and performs the same 
simple operation in any context of use.   
 
Generalising this discussion, we can say that reuse of 
failure annotations is likely to be possible for simple 
components like sensors and actuators. On the other 
hand, the failure annotations for programmable 
components or components with variable functional 
profiles will generally have to be re-constructed each 
time the component is used in a different application 
with reference to the functions performed in the 

context of this application. There are, however, 
exceptions to this rule and opportunities for reuse of 
safety analyses even for complex components. 
 
4.2 Reuse of patterns of failure behaviour 
 
Complex components (or sets of such components in 
fault tolerant configurations) are often designed to 
provide the same standard failure behaviour on all 
outputs independently from context of application.  A 
good example of this is the TTA communication 
controller, a component that handles the 
communication between a host and other controllers 
in a time-triggered network (Kopetz, 1995). Analysis 
of the published specification of this component 
shows that the controller has several important safety 
properties that should hold in any context of 
operation. This, however, enables us to specify a 
generic (and reusable) pattern of the controller 
behaviour in the failure domain. The pattern is 
schematically illustrated in Fig. 2, and shows that the 
controller is extremely efficient in terms of handling 
the various classes of failure that analysts would 
typically examine in a HiP-HOPS study. Early, late 
and commission failures caused by internal controller 
faults or the local host are detected and therefore 
cannot cross the controller-bus interface. Such 
failures are, therefore, obsolete within the sphere of a 
TTA network. One reason is that the controller 
contains mechanisms that prevent the generation of 
such types of failures. In addition, the controller 
detects commission and timing failures generated by 
the host and transforms these failures into omissions. 
Thus, the only failures that cross the bus interface 
and enter the sphere of a TTA network are omission 
and value failures generated by the host or at the CNI 
(memory area where host and controller exchange 
information). Two more types of failure can be 
generated within the sphere of communications: 
omission and value failures caused by external 
disturbances during transmission (e.g. Electro-
Magnetic Interference). From those four classes of 
failure only one can propagate through and exit 
undetectable from the TTA network: value failures 
generated by the host or at the CNI. 
 
The pattern of Fig.2 defines a convenient, generic 
abstraction of the controller behaviour in the failure 
domain which can be directly translated into failure 
expressions and then used (and reused) in the context 

Fig.2. Pattern of failure behaviour of TTA controller (transformation and propagation of failures) 

Undetectable  
controller faults 
that corrupt messages 

OmissionTRANSMISSION

Value

Omission 

Early 
Late 
Value 

Commission Omission
detectable by the ensemble

Value
undetectable by the ensemble

Host Bus (sphere of TTA network)

Value failure
undetectable by host

Omission failure
detectable by host

Host TTA controller 

Omission
Transmission

Value

Omission 

Early 
Late 
Value 

Commission Omission
detectable by other controllers Detectable  

controller faults 
that violate the temporal 
bus access pattern 

Value
undetectable by other controllers

Host Bus (TTA network)

Value failure
undetectable by host

Omission failure
detectable by host

Host 

Transmission

TTA controller

Detectable 
controller faults 

  
Undetectable 
controller faults
that corrupt messages 



     

of HiP-HOPS to simplify the safety assessment of 
TTA networks. However, the assumptions about the 
properties of the communication controller that 
underlie this model (stated as requirements in its 
published specification) must be verified on the 
actual implementation of the controller before the 
model can be safely used for all the practical 
purposes of application safety analysis.  
 
We currently perform a similar type of “pattern” 
analysis on a number of fault tolerant architectures 
including schemes that employ hot or cold standbys, 
majority voters, safety monitors and other 
mechanisms that enforce certain patterns of failure 
behaviour (Grunske, 2003). The aim is to develop 
libraries of such patterns that can be reused in the 
context of HiP-HOPS in order to simplify the 
assessment of complex systems. 
  

5. TOOL AND APPLICATIONS 
 

To support the proposed process, we have developed 
a tool that generates system fault trees and FMEAs 
from Matlab-Simulink models (Papadopoulos and 
Maruhn, 2001). The synthesised fault trees and their 
analyses (cut-sets and FMEA) are presented in 
interactive graphical and tabular form in an HTML 
viewer. The tool is experimental but usable by third 
parties and has so far been used in complex case 
studies (e.g. those reported in Papadopoulos, et al., 
2001 & 2004). Volvo is currently evaluating the tool 
in a study performed on an advanced steer-by-wire 
prototype. Functional and architectural models of 
this system have been analysed using this tool. These 
models are of moderate complexity: they contain 
hundreds of components and the analysis results to 
failure logic in the order of tens of thousands of cut-
sets. Although initial annotation of such models has 
proven far from trivial, benefits from reuse meant 
that substantial reductions in effort were achieved in 
addition to the benefits of keeping the analyses 
consistent with the design.  Iterations of analyses are 
still ongoing, but we expect to be in a position soon 
to publish more on the results of this study, which we 
hope will shed more light into the application, 
capabilities and limitations of HiP-HOPS.  

 
6. CONCLUSIONS AND FURTHER RESEARCH 

 
In this paper, we proposed a continuous safety 
assessment process that can guide complex safety 
critical designs as these naturally evolve in the 
course of the design life-cycle. The process is based 
on repeated and consistent application of HiP-HOPS, 
a new model-based semi-automatic safety and 
reliability analysis technique that can be applied to 
progressively more refined models of a system. We 
have shown that HiP-HOPS is applicable both to 
abstract functional models and more detailed 
architectural models. Application to functional 
models produced early in the design can help to 
distinguish critical from non-critical functions and 
drive the design of these functions. On the other 
hand, application at later stages helps to confirm that 
design problems have been dealt with effectively and 
that the system meets its safety and reliability 

requirements. By automating the synthesis of fault 
trees and FMEAs, HiP-HOPS are expected to 
simplify the safety and reliability analysis of 
complex systems. However manual annotations are 
required at component level before a synthesis of 
analyses can be achieved at system level. Re-use of 
these annotations is therefore crucial in achieving the 
central objectives of automation and simplification of 
the analysis. For this reason, we also discussed the 
potential for, and limitations of, reuse in HiP-HOPS. 
We identified two types of possible re-use of local 
analyses: direct re-use of annotations for simple 
components and re-use of patterns of failure 
behaviour for more complex components and well-
established fault tolerant schemes. We view this 
second type of reuse as particularly important for the 
further development of HiP-HOPS as it opens up 
opportunities for further useful work in the area of 
automated safety analysis and possibilities for further 
simplification of safety assessment in the context of 
this new technique. 
 
We also currently explore the development of 
automated interfaces between HiP-HOPS and 
Component Fault Trees a recently proposed 
extension to fault tree notation that enables 
modularisation, reuse and fast analysis of failure 
logic (Kaiser, et al., 2003). In this notation, as in 
HiP-HOPS, failure logic is developed and structured 
around the hierarchical decomposition of the system. 
The two approaches seem to converge and, thus, a 
potential synthesis and development of interfaces 
between the respective tools may benefit the overall 
process of construction and analysis of failure 
models for complex systems. 
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