

CONTINUOUS ASSESSMENT OF DESIGNS AND RE-USE
IN MODEL-BASED SAFETY ANALYSIS

Yiannis Papadopoulos1, Christian Grante2, Lars Grunske3, Bernhard Kaiser4

1Department of Computer Science, University of Hull, U.K., y.i.papadopoulos@hull.ac.uk
2Volvo Cars Corporation, Sweden, cgrante@volvocars.com

3School of ITEE, The University of Queensland, Brisbane, Australia, grunske@itee.uq.edu.au
4Fraunhofer IESE, Kaiserslautern, Germany, Bernhard.kaiser@iese.fraunhofer.de

Abstract: To deliver complex functionalities in a cost effective manner, distributed
manufacturing systems should ideally be based on standard interoperable components and
be flexible and easily extensible. At the same time, systems must be demonstrably safe
and reliable. In this paper, we argue that to balance these conflicting demands effective
safety analysis techniques are required that partly automate and simplify off-line safety
assessment. We outline a technique that automates the construction of fault trees and
FMEAs and explain how this technique can be repeatedly applied in the course of the
design life-cycle on functional and architectural models to enable continuous assessment
of evolving designs. Finally, we discuss the issue of re-use of safety analyses and give
examples of how such reuse simplifies the assessment. Copyright © 2005 IFAC

Keywords: safety critical systems, fault identification, fault-tolerance, automated safety
analysis, reliability analysis.

1. INTRODUCTION AND BACKGROUND

In many engineering and manufacturing industries,
the introduction of distributed embedded systems
presents opportunities for building cost-effective and
flexible design solutions. However, the introduction
of such systems in safety critical applications must
be carefully considered. In such systems, the
integration of functions and its implications, i.e.
interaction, interoperation and sharing of resources,
raise serious safety concerns which include the
possibility of common cause failure and unpredicted
dependent failure of critical functions caused by
malfunction of non-critical functions. Difficulties are
also caused by increasing scale and complexity. The
distribution of functions in such systems may indeed
be very complex while dynamic reconfigurations
may be necessary to meet demands for process
changes in real-time. Complete and rigorous safety
analyses must, therefore, cover every reconfiguration
even when this represents only minor changes.
Similarly, new safety analyses must be performed
every time the design of the system evolves, e.g. to

incorporate new requirements, in order to capture
correctly any new and potentially hazardous
dependencies between functions. Two related
questions may be asked at this point concerning our
ability to perform safety analysis on complex
distributed systems: Can complete and rigorous
safety analysis of such systems be achieved within
the constraints of modern production? And, if it can,
to what extend could safety analyses produced at one
stage of the design be re-used to enable the analysis
of subsequent versions of an evolving design?

In this paper, we argue that the key to addressing
successfully the first question is introducing some
degree of automation in safety analysis. In section 2,
we illustrate how this can be achieved in the context
of HiP-HOPS (Hierarchically Performed Hazard
Origin and Propagation Studies) a new technique for
semi-automatic construction of fault trees and
FMEAs (Papadopoulos, et al., 2001). In sections 3
and 4, we show how application of this technique can
be effectively iterated to enable management of
design changes in safety analysis. In section 3 we

discuss application of HiP-HOPS to abstract
functional models, while in section 4 we discuss
application to more detailed architectural models. In
the respective sections, we also discuss the issue of
re-use. As a result of this discussion, we identify two
types of reuse which together with automation in the
context of HiP-HOPS simplify the analysis of
complex systems: re-use of local safety analyses for
functions or components that have well-defined
operational profiles, and reuse of patterns that
describe the failure behaviour of complex
components (or fault tolerant schemes) designed to
exhibit certain failure behaviour. We also identify the
limitations of such re-use and, finally, conclude by
pointing out directions of further work.

2. HiP-HOPS

HiP-HOPS is a model-based semi-automatic safety
and reliability analysis technique. In HiP-HOPS, a
structural model of the system (hierarchical if
required to manage complexity) is first annotated
with formalised logical descriptions of component
failures and then used as a basis for the automatic
construction of fault trees and FMEAs for the
system. Application of the technique can start once a
concept of the system under design has been
interpreted into an engineering model which
identifies components and material, energy or data
transactions among components. Suitable models for
the application of the technique include functional
block diagrams, abstract engineering schematics,
piping and instrumentation diagrams, hardware
descriptions, data flow diagrams, and other models
commonly used in engineering design.

HiP-HOPS can be performed on abstract or more
detailed models of the system as these are produced
and refined in the course of the design life-cycle.
This of course creates opportunities for re-use of
earlier analysis and the ability to achieve a consistent
and continuous assessment in the centre of which lies
the design of the system itself. At the early stages of
design, the model that provides the basis for the
analysis can be a block diagram which shows the
functional composition of the system, input/output
transactions among functions and the recursive
refinement of functions into networks of lower level
sub-functions. Later on, when functions are allocated
to hardware, the model becomes a representation of
the physical architecture of the system which shows
components such as sensors, actuators, busses and
programmable controllers enclosing networks of
tasks running upon those controllers.

The first step in the analysis of such models in HiP-
HOPS is the establishment of the local failure
behaviour of each component (i.e. function,
hardware or software element) in the model as a set
of logical failure expressions which show how output
failures of the component can be caused by internal
malfunctions and deviations of the component
inputs. A variant of Hazard and Operability Studies
(HAZOP) is used to identify plausible output failures
such as the omission, commission, value (hi, low) or

timing (early, late) failure of each output and then to
determine the local causes of such events as
combinations of internal component malfunctions
and similar types of input failures. Once this analysis
has been completed for all components, and the
derived failure expressions have been inserted into
the model, the structure of the model is then used to
automatically determine how the local failures
specified in those expressions propagate through
connections in the model and cause functional
failures at the outputs of the system. This global view
of failure is captured in a set of fault trees which are
automatically constructed by traversing the model
and by evaluating the local failure expressions
encountered during the traversal.

The synthesised fault trees are interconnected and
form a directed acyclic graph sharing branches and
basic events that arise from dependencies in the
model, e.g. common inputs which may cause
simultaneous dependent failure of hypothetically
“independent” channels in the model. Classical
Boolean reduction techniques and recent algorithms
for fault tree analysis that employ Binary Decision
Diagrams (BDDs) are applicable on this graph. Thus,
qualitative analysis (e.g. of abstract functional
models) or quantitative analysis (e.g. calculation of
system-level failure rates from known failure rates on
component-level) can be automatically performed on
the graph to establish whether the system meets its
safety or reliability requirements. In recent work we
have shown that the logic contained in the graph can
be automatically translated into a simple table which
is equivalent to a classical multiple failure mode
system FMEA (Papadopoulos, et al., 2004).

3. ITERATION OF HiP-HOPS ON ABSTRACT

FUNCTIONAL MODELS AND RE-USE

In HiP-HOPS, human interpretation of the
synthesised fault trees and FMEA helps to initiate
useful design iterations. To gain maximum value,
application of the technique should start as early as
possible when abstract functional models of the
system become available. The objectives of abstract
analysis are two-fold: (a) assist the early
identification of design flaws; (b) point out critical
functions and guide the design of such functions.
Satisfaction of these two objectives would mean that
expensive design iterations needed to correct errors
late in the design could be avoided while an effective
design approach could be established in which the
design of critical functions (and safety measures for
these functions) could be driven by the result of
semi-automatic HiP-HOPS analyses performed on
increasingly refined models of the system.

Abstract functional models typically developed at
early design stages do not refer to particular
hardware architectures, distribution of functions or
communication of information. They do identify,
though, input, processing and actuator functions, and
show how interaction among these functions results
in the provision of system functions. In an advanced
steer-by-wire system currently designed by Volvo
with the aid of the HiP-HOPS tool (see section 5), for

instance, such functions include the control of
steering, the generation of feedback torque on the
steering wheel, and the reception and transmission of
information from and to controls in the steering
wheel and other locations.

In HiP-HOPS, functional models are first annotated
with information about the potential failure
behaviour of functions. In the absence of references
to particular hardware, analysts can assume that each
function potentially exhibits all classes of output
failures typically examined in the course of the
analysis (i.e. omission, commission, value and timing
failures). Failure expressions are then constructed to
relate each such output failure to a respective failure
mode of the function and deviations of function
inputs that can be caused by output failures of other
functions further upstream in the model. For a
function X that receives two inputs I1 and I2 and
generates an output O, an expression for example
may define that an omission of O (Omission-O) can be
caused by an omission failure of the function
(OmissionX) or a simultaneous omission of both
inputs (Omission-I1, Omission-I2): i.e.:

Omission-O=OmissionX or Omission-I1 and Omission-I2

From such expressions describing the potential local
failure behaviour of functions, in HiP-HOPS it is
possible to automatically generate a set of system
fault trees and an FMEA which show how potential
failures of input, processing and actuator functions
cause system level effects, e.g. in a steer-by-wire
system the omission or deviation of steering, driver
feedback and other critical system functions. A
classification of the severity of those effects into
marginal and catastrophic can then help to identify
the criticality of causes, i.e. the criticality of failures
of input, processing and actuator functions. These
results in turn can guide the design of these
functions. Our experience from several rounds of
analysis and interpretation of results in the steer-by-
wire case study have suggested two general rules that
can be applied to directly interpret results from this
type of analysis into useful design guidelines:

a) When the analysis indicates that the omission of a

function has only marginal effects while
commission and value failures have catastrophic
effects, a design recommendation should be made
to design the function in a way that it “fails
silent”. This in turn can lead designers to the
identification of new degraded modes in which
non-critical functions may fail silent with only
marginal effects on the system.

b) When the analysis indicates that all potential

failure modes of a function have catastrophic
effects on the system then a design
recommendation should be made to allocate the
function to a fault tolerant architecture.

Application of these guidelines can give new insight
into the design of the system. A new system state-
chart for example can be constructed to show how
graceful transition to the identified degraded modes

could be achieved and, driven by these results,
design iteration can take place to incorporate these
new degraded modes in an improved version of the
system model. Further HiP-HOPS studies can be
performed on subsequent refinements of the
functional model and these can take place before the
decision to proceed with the architectural allocation
of functions to hardware. In the context of such
iteration, the failure annotations of functions that
have not been influenced by design changes can be
directly re-used. If a function has changed, however,
i.e. if it receives different inputs, performs a different
transformation on inputs or produces different
outputs, then the failure annotations of the function
must be revised. To illustrate this, let us take as an
example a function X that operates on input I and
generates an output O. The following two
annotations describe the local failure behaviour of
the function:

Omission-O=OmissionX or Omission-I
Commission-O= CommissionX or Commission-I

Let us now also assume that application of HiP-
HOPS has shown that CommissionX has catastrophic
effects on the system while OmissionX has only
benign effects and can be tolerated. In response to
these results, the design of X is revised to include a
self-monitoring mechanism at the output. This
mechanism detects a condition that would otherwise
have been a Commission-O and, in return, forces X to
fail silent. In this new design, a CommissionX and the
consequent Commission-O become implausible and
can therefore be removed from the analysis as a
potential cause and local effect of failure of X
respectively. The failure behaviour of the modified
function is now described by the following single
expression:

Omission-O= OmissionX or Omission-I or Commission-I

Such revisions of failure annotations must take place
to ensure that the analysis reflects changes in the
functional design. However, such changes would
typically be limited to areas of the design that the
analysis has pointed out to be critical. Hence,
substantial re-use of failure annotations, and
therefore simplification of the analysis, can be
expected in every iteration of the analysis process.

4. ITERATION OF HiP-HOPS ON DETAILED
ARCHITECTURAL MODELS AND RE-USE

At some point in the development of a design,
functions are allocated to hardware components.
Input functions are allocated to sensors, output
functions to actuators and processing functions are
distributed on control processors which are typically
connected over one or more busses. Assuming that
information about the failure modes of these
components is available, HiP-HOPS studies at this
stage can become much more detailed and
quantitative in nature making use of available
information about component failure modes and
failure rates.

The failure annotations of components are now
extended to include the failure modes of each
component and any failure rates if available. Such
failure modes typically include electrical and
mechanical failures caused by wear or environmental
conditions for which the component is not qualified.
The failure expressions that link component output
failures to logical combinations of input failures and
internal component malfunctions now make
reference to these specific failure modes.

In hierarchical models that record the decomposition
of systems, failure annotations can also be inserted at
subsystem level to collectively capture the effect of
failure conditions that do not necessarily require
examination at basic component level. If, for
example, a subsystem as a whole is susceptible to
some environmental disturbance like electromagnetic
interference, then the effects of this condition can be
directly specified with a failure annotation at
subsystem level. This annotation, for example, could
define that all outputs of the subsystem are omitted
in the event of electromagnetic interference. Such
annotations would typically complement other
annotations made at the level of the enclosed
components to describe aspects of failure behaviour
at this level (e.g. the mechanical and electrical failure
modes of each component). In general, when
examining the causes of a failure at an output of a
sub-system, the fault tree synthesis algorithm creates
a disjunction between any failure logic specified at
sub-system level and logic arising from the enclosed
lower levels. Thus, by enabling causes of failure to
be described at both component and sub-system
level, it becomes possible to avoid repetition of data
that would otherwise be required to describe factors
affecting entire sub-systems. This feature, we feel,
makes HiP-HOPS a truly hierarchical approach to
the analysis of complex systems.

Component failure rates, if provided at this stage, are
embedded in the structure of the automatically
synthesised fault trees and can be used to perform
probabilistic calculations aimed at prediction of the
reliability of the system. Note, though, that credible
failure rates (often not available) are not essential to
produce useful results. Qualitative application of the
technique can still produce useful results. The logical
reduction of the synthesised fault trees into minimal
cut-sets and FMEA, for instance, can indicate single
points of failure in the system and point out potential
design weaknesses. This, however, should not
conclude the analysis process. Indeed, design
changes prompted by interpretation of the current
analyses may correct existing problems but can also
introduce new unintended errors. Thus, re-
establishment of the failure behaviour of the system
via iteration of HiP-HOPS should follow such design
changes. Clearly, our ability to iterate fast this
process will ultimately also define our ability to
manage effectively the evolution of the design in
safety analysis. The automated algorithms of HiP-
HOPS for the synthesis of fault trees and FMEAs can
clearly help in this direction. However, our ability to
effectively apply the method on an evolving design is
also heavily dependent upon the ability to re-use the

failure annotations that are required by HiP-HOPS at
component level.

4.1 Reuse of component safety analyses

It can be easily established that the failure
annotations of a component can be directly re-used in
the same application as long as design changes do
not influence the function of the component, i.e. the
component receives the same inputs and performs the
same operation. It is also useful to ask at this point
whether such annotations could be re-used across
different applications. This type of reuse would be
more powerful and would clearly help to further
simplify safety assessment in the context of HiP-
HOPS. To address this question let us examine for a
moment the failure annotations of the two-way
computer controlled valve illustrated in Figure 1. The
figure shows the valve as it would typically be
illustrated in a plant diagram and records the results
of analysis for the component in two tables that
define valve malfunctions and output deviations
respectively. In normal operation, the valve is
normally closed and opens only when the computer
control signal has a value of a logical one (1). Valve
malfunctions include mechanical failures such as the
valve being stuckOpen or stuckClosed, and blockages
caused by debris such as blocked and partially-
Blocked. For each malfunction, the analysis records
an estimated failure rate while the effects of those
malfunctions on the output of the valve can be seen
in a second table that lists output deviations.

Valve Malfunctions
Failure mode Description Failure

rate
Blocked e.g. by debris 1e-6
partiallyBlocked e.g. by debris 5e-5
stuckClosed Mechanically stuck 1.5e-6
stuckOpen Mechanically stuck 1.5e-5

Deviations of Flow at Valve Output
Output
Deviation

Description Causes

Omission-b Omission of
flow

Blocked or
stuckClosed or
Omission-a or
Low-control

Commission-b Commission
of flow

stuckOpen or
Commission-a
or Hi-control

Low-b Low flow partiallyBlocked
or Low-a

Hi-b Hi flow Hi-a
Early-b Early flow Early-a or

Early-control
Late-b Late flow Late-a or

Late-control

Fig.1. Failure annotations of a computer-operated
two-way valve

 a b

 control

Here, we can see that an omission of the output flow
(Omission-b) can be caused by a number of
malfunctions such as valve blocked and stuckClosed
or by input failures such as omission of input flow
(Omission-a) or a value failure in the control signal
(Low-control). Similarly, commission of the output
flow (Commission-b) can be caused by a valve
malfunction (stuckOpen), commission of input flow
(Commission-a) or a value failure in the control
signal (Hi-control). The table also provides
expressions that define the causes of value and
timing failures at the output of the valve.

In this analysis, there is an implicit assumption that
point b is always the output of the valve which may
be true in a particular system configuration but not in
general. To account for flows in the opposite
direction, we also need to consider point a as an
output, which in practice means that the table has to
be extended to include deviations of point a. The
symmetry in the design of the valve means that
mechanical replication is only required to complete
this specification of how the valve behaves in
conditions of failure. This specification is generic in
the sense that it does not contain references to the
context within which the valve operates. Failure
expressions make references only to component
malfunctions and input/output ports of the
component. The failure behaviour described in these
expressions has been derived assuming a simple
operation that we expect the component to perform
in every application (valve is normally closed unless
the value of control signal is 1). For these reasons,
the specification of Fig.1 provides a template that
could be re-used in different models and contexts of
operation, perhaps with some modifications, e.g. on
failure rates, to reflect a different environment. We
must stress, thought, that this type of reuse is only
possible because the valve has a small number of
well-defined interface points and performs the same
simple operation in any context of use.

Generalising this discussion, we can say that reuse of
failure annotations is likely to be possible for simple
components like sensors and actuators. On the other
hand, the failure annotations for programmable
components or components with variable functional
profiles will generally have to be re-constructed each
time the component is used in a different application
with reference to the functions performed in the

context of this application. There are, however,
exceptions to this rule and opportunities for reuse of
safety analyses even for complex components.

4.2 Reuse of patterns of failure behaviour

Complex components (or sets of such components in
fault tolerant configurations) are often designed to
provide the same standard failure behaviour on all
outputs independently from context of application. A
good example of this is the TTA communication
controller, a component that handles the
communication between a host and other controllers
in a time-triggered network (Kopetz, 1995). Analysis
of the published specification of this component
shows that the controller has several important safety
properties that should hold in any context of
operation. This, however, enables us to specify a
generic (and reusable) pattern of the controller
behaviour in the failure domain. The pattern is
schematically illustrated in Fig. 2, and shows that the
controller is extremely efficient in terms of handling
the various classes of failure that analysts would
typically examine in a HiP-HOPS study. Early, late
and commission failures caused by internal controller
faults or the local host are detected and therefore
cannot cross the controller-bus interface. Such
failures are, therefore, obsolete within the sphere of a
TTA network. One reason is that the controller
contains mechanisms that prevent the generation of
such types of failures. In addition, the controller
detects commission and timing failures generated by
the host and transforms these failures into omissions.
Thus, the only failures that cross the bus interface
and enter the sphere of a TTA network are omission
and value failures generated by the host or at the CNI
(memory area where host and controller exchange
information). Two more types of failure can be
generated within the sphere of communications:
omission and value failures caused by external
disturbances during transmission (e.g. Electro-
Magnetic Interference). From those four classes of
failure only one can propagate through and exit
undetectable from the TTA network: value failures
generated by the host or at the CNI.

The pattern of Fig.2 defines a convenient, generic
abstraction of the controller behaviour in the failure
domain which can be directly translated into failure
expressions and then used (and reused) in the context

Fig.2. Pattern of failure behaviour of TTA controller (transformation and propagation of failures)

Undetectable
controller faults
that corrupt messages

OmissionTRANSMISSION

Value

Omission

Early
Late
Value

Commission Omission
detectable by the ensemble

Value
undetectable by the ensemble

Host Bus (sphere of TTA network)

Value failure
undetectable by host

Omission failure
detectable by host

Host TTA controller

Omission
Transmission

Value

Omission

Early
Late
Value

Commission Omission
detectable by other controllers Detectable

controller faults
that violate the temporal
bus access pattern

Value
undetectable by other controllers

Host Bus (TTA network)

Value failure
undetectable by host

Omission failure
detectable by host

Host

Transmission

TTA controller

Detectable
controller faults

Undetectable
controller faults
that corrupt messages

of HiP-HOPS to simplify the safety assessment of
TTA networks. However, the assumptions about the
properties of the communication controller that
underlie this model (stated as requirements in its
published specification) must be verified on the
actual implementation of the controller before the
model can be safely used for all the practical
purposes of application safety analysis.

We currently perform a similar type of “pattern”
analysis on a number of fault tolerant architectures
including schemes that employ hot or cold standbys,
majority voters, safety monitors and other
mechanisms that enforce certain patterns of failure
behaviour (Grunske, 2003). The aim is to develop
libraries of such patterns that can be reused in the
context of HiP-HOPS in order to simplify the
assessment of complex systems.

5. TOOL AND APPLICATIONS

To support the proposed process, we have developed
a tool that generates system fault trees and FMEAs
from Matlab-Simulink models (Papadopoulos and
Maruhn, 2001). The synthesised fault trees and their
analyses (cut-sets and FMEA) are presented in
interactive graphical and tabular form in an HTML
viewer. The tool is experimental but usable by third
parties and has so far been used in complex case
studies (e.g. those reported in Papadopoulos, et al.,
2001 & 2004). Volvo is currently evaluating the tool
in a study performed on an advanced steer-by-wire
prototype. Functional and architectural models of
this system have been analysed using this tool. These
models are of moderate complexity: they contain
hundreds of components and the analysis results to
failure logic in the order of tens of thousands of cut-
sets. Although initial annotation of such models has
proven far from trivial, benefits from reuse meant
that substantial reductions in effort were achieved in
addition to the benefits of keeping the analyses
consistent with the design. Iterations of analyses are
still ongoing, but we expect to be in a position soon
to publish more on the results of this study, which we
hope will shed more light into the application,
capabilities and limitations of HiP-HOPS.

6. CONCLUSIONS AND FURTHER RESEARCH

In this paper, we proposed a continuous safety
assessment process that can guide complex safety
critical designs as these naturally evolve in the
course of the design life-cycle. The process is based
on repeated and consistent application of HiP-HOPS,
a new model-based semi-automatic safety and
reliability analysis technique that can be applied to
progressively more refined models of a system. We
have shown that HiP-HOPS is applicable both to
abstract functional models and more detailed
architectural models. Application to functional
models produced early in the design can help to
distinguish critical from non-critical functions and
drive the design of these functions. On the other
hand, application at later stages helps to confirm that
design problems have been dealt with effectively and
that the system meets its safety and reliability

requirements. By automating the synthesis of fault
trees and FMEAs, HiP-HOPS are expected to
simplify the safety and reliability analysis of
complex systems. However manual annotations are
required at component level before a synthesis of
analyses can be achieved at system level. Re-use of
these annotations is therefore crucial in achieving the
central objectives of automation and simplification of
the analysis. For this reason, we also discussed the
potential for, and limitations of, reuse in HiP-HOPS.
We identified two types of possible re-use of local
analyses: direct re-use of annotations for simple
components and re-use of patterns of failure
behaviour for more complex components and well-
established fault tolerant schemes. We view this
second type of reuse as particularly important for the
further development of HiP-HOPS as it opens up
opportunities for further useful work in the area of
automated safety analysis and possibilities for further
simplification of safety assessment in the context of
this new technique.

We also currently explore the development of
automated interfaces between HiP-HOPS and
Component Fault Trees a recently proposed
extension to fault tree notation that enables
modularisation, reuse and fast analysis of failure
logic (Kaiser, et al., 2003). In this notation, as in
HiP-HOPS, failure logic is developed and structured
around the hierarchical decomposition of the system.
The two approaches seem to converge and, thus, a
potential synthesis and development of interfaces
between the respective tools may benefit the overall
process of construction and analysis of failure
models for complex systems.

REFERENCES

Grunske, L. (2003). Transformational Patterns for

Improvement of Safety Properties in
Architectural Specification, 2nd Nordic Conf. on
Pattern Languages, Sept. 19-21, Norway.

Kaiser, B., P. Liggesmeyer and O. Mäckel (2003). A
New Component Concept for Fault Trees.
SCS'03, Canberra, Conf. in Research and Practice
in Inf. Tech., 33, Australian Computer Society.

Kopetz, H. (1995), The Time-triggered Approach to
Real-time System Design, Predictably Dependa-
ble Computing Systems, ESPRIT basic research
series, Springer-Verlag, Berlin.

Papadopoulos, Y. and M. Maruhn (2001). Model-
based Automated Synthesis of Fault Trees from
Simulink models, Int’l Conf. on Dependable
Systems and Networks, pp. 77-82, Götenborg.

Papadopoulos Y., J.A. McDermid, R. Sasse and G.
Heiner (2001). Analysis and Synthesis of the
Behaviour of Complex Systems in Conditions of
Failure, RESS, 71(3):229-247.

Papadopoulos Y., D. Parker and C. Grante (2004). A
Method and Tool Support for Model-based Semi-
automated FMEA, SCS'04, Brisbane, 38,
Australian Computer Society.

Sinnamon, R.M. and J.D. Andrews (1997). New
Approaches to Evaluating Fault Trees, Reliability
Engineering and System Safety, 58:89-96.

