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Abstract: Process engineering systems encountered in many risky industries 
(nuclear, chemical…) are complex because of their multidomain energy character. 
Actuators are the main elements for their control design. They need for their safety 
a monitoring system. The monitorability model based analysis (ability to detect and 
to isolate an actuator fault) is based on the structured residual analysis using 
analytical redundancy or covering causal path based on bond graph methodology.   
The present paper proposes a new approach based on flatness topology for actuator 
monitorability analysis. The developed approach is illustrated by a thermofluid 
application (a non-linear multienergy system). Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Actuators are complex and non linear systems 
characterized by the coupling of several energies 
(thermal (heater), electrical, mechanical,...). 
Furthermore, the complexity of modern plants makes 
them more sensitive to failures. The safety and 
availability of these plants depends on Fault Detection 
and Isolation (FDI) procedures, consisting of the 
comparison between actual behavior of the system 
(provided by the sensors) with reference behaviors 
describing the normal operation (for fault detection) or 
different kinds of faulty ones (for fault 
isolation/estimation).  

 
One of the most frequently used approaches in the 
monitoring domain is redundancy, which consists in 
finding the over determined system variable values by 
different ways and checking if all the results coincide. 

This redundancy may be either physical or analytical. 
The first one is easy to apply and very reliable, but is 
expensive and cumbersome (Brunet et al., 1990). 
Analytical redundancy aims to find relations between the 
known variables of the system (Declerck and 
Staroswiecki, 1992; Cocquempot, 1993). Comparing 
with any classical model based methods, the Bond 
Graph (BG) tool allows the Analytical Redundancy 
Relations (ARRs) to be determined directly from the BG 
before writing the equations describing the system.  

 
For the actuator and sensor faults diagnosis, the BG use 
for the design and the improvement of instrumentation 
architecture has already delivered interesting results 
based on the linearized models (El Osta et al., 2004 (a)). 
The proposed methods allow the diagnosability study 
with no need to generate the ARRs. For components 
monitoring in industrial processes, the reader may refer 
to (El Osta et al., 2004 (b)). However, in the non-linear 



case, the detection and isolation of faults on actuators is 
based on signature matrix deduced from a complex 
calculation of ARRs. Based on a quantitative bond graph 
approach, the developed FDI procedure concerns the 
monitoring of actuators (control sources) in non-linear 
systems. The innovative interest of the paper consists in 
the diagnosability (ability to detect and isolate faults) 
analysis using flatness without the ARRs generation. 
Indeed, flatness topology makes a valuable contribution 
to the system-monitoring domain of flat models. It will 
be shown how a well instrumentation architecture 
design, i.e., a well placement of sensors, assures in a 
generic way the diagnosability of actuators. In fact, 
placing sensors on flat outputs provides better insight 
into the effect of actuator faults and consequently their 
diagnosability can easily be analyzed. 

 
The paper is organized as follows: after the description 
of the developed methodology in the second section, the 
following one treats the case of thermofluid systems, 
where the monitored process is a complex non linear 
model combining thermal and hydraulic energies. 
Finally, this approach is applied to a thermofluid system 
of three tanks in order to analyze the isolation ability of 
the actuators considered in bond graph methodology as 
control sources. In (Achir et al., 2003) a new point of 
view of bond graphs in terms of differential algebra, 
modules and differential fields was introduced for the 
identification of flat outputs in non linear systems. While 
bond graphs seem to be well adapted for the study of 
flatness, further works should apply the existent 
techniques to identify flat outputs for coupled 
multienergy systems modeled by BGs.  

 
2. FLATNESS FOR DIAGNOSABILITY IN THE 

NON LINEAR CASE 
 

Different approaches for the design of FDI procedures 
have been developed, depending on the kind of 
knowledge used to describe the plant operation. One of 
them rests on the use of quantitative dynamical models, 
which lead to the determination of ARRs, allowing the 
real time monitoring. However, the ARRs generation is 
not easy for systems, where the monitored process is a 
complex non linear model combining several energies. 
Based on flatness theory introduced by (Fliess et al., 
1992; 1995), this section deals with the monitoring of 
actuators for flat systems. Recall some basic definitions: 
 
Definition 1.  A system ),( uxfx =& , nRx ∈ , mRu ∈ , 
is said to be flat if  there exist m functions of the state 
variables (flat outputs), of the inputs and of theirs 
derivatives to an order nr ≤  such that the state variables 
and the input variables can be expressed in terms of 
these flat output variables, meaning that there exist three 
mappings: 
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One major property of flat models is that the output, the 
state (first condition of flatness) and the input variables 
(second condition of flatness) can be parameterized 
without integrating any differential equations, in terms 
of the flat outputs and a number of their derivatives. This 
interesting property gave rise to many control 
applications and encourages using this property for the 
monitoring analysis and the control synthesis in 
nonlinear bond graph models. Consider the 
monitorability of actuators in non-linear systems, the 
next theorem can be stated based on the definition of a 
flat system: 
 
Theorem 1. The m actuators (control sources) of a flat 
system are monitorable if we dispose of m sensors 
placed at flat outputs and if 1>m . 
 
Proof. Two cases can be distinguished: 
 
If m = 1 (we dispose only of one actuator), then the 
relation ),,...,,( )()1( rr yyyyu −= &χ  relates the control 
source to the flat output and its r derivatives and thus 
even by having a sensor measuring this output the 
actuator is not monitorable.  In fact, this relation 
constitutes a basis of ARRs, and then any other analytic 
redundancy relation is proportional to this relation and 
does appear the same variables (source and sensor).  
Both variables will have the same signature and 
consequently are not monitorable. 
 
If 1>m , we have at least two measured flat outputs, the 
relation ),,...,,( )()1( rr yyyyu −= &χ  constitutes a basis of 
ARRs allowing the isolation of an actuator fault because 
the signature of each actuator fault is different from the 
signatures of the other variables. Table 1 shows the 
corresponding signature fault matrix. ''1'' (''0'') in the ith 
row and jth column means that the ith ARR (ARRi) is 
sensible (not sensible) to the jth failure. uj and j

y  

(j=1..m) designate respectively the jth
 element of the 

control source vector u and the jth output with its 
derivatives to the order nr j ≤ . The Boolean failure 
signature vectors of control sources are all different, thus 
the failures which may affect them can be detected and 
isolated. 

 Signature fault matrix 1Table  
 

ARRs u1 u2  um 
1

y  
2

y   
m

y  

ARR1 1 0 … 0 1 1  1 
ARR2 0 1 O  M  1 1  1 
 M  O  O  0 1 1  1 
ARRm 0 … 0 1 1 1  1 



3. DIAGNOSABILITY IN THERMOFLUID 
PROCESSES 

 
Dynamic models in process engineering are non-linear. 
The non linearities mainly result from coupling of 
different energies (thermal, chemical, mechanical,…). 
The bond graph as a multidisciplinary and unified 
language tool is well suited for the modeling purpose. 
The bond graph modeling methodology is based on the 
characterization of power exchange phenomenon in a 
system. Thermal and mechanical systems can be 
modelled by true bond graphs (Dauphin-Tanguy, 1999). 
However, the complexity of the thermodynamic 
phenomena requires a careful choice of the power 
variables. Indeed, in process engineering, true bond 
graphs introduce thermal effort variables of complex 
natures. They are not well adapted for simulation 
problems (they do not respect the simple conservation 
laws). Consequently, pseudo bond graphs are used (the 
product effort by flow is no more a power (Karnopp et 
al., 1990)). However, the classical properties of true 
bond graphs stay available for pseudo bond graphs. The 
selection of power variables and constitutive relations 
for the different multiports in such process depends on 
the modeled physical phenomena (saturated, under 
saturated…) (Thoma and Ould-Bouamama, 2000). As 
power variables, the temperature T or the specific 
enthalpy h are used for the thermal effort variable Te  
and the pressure P is used as the hydraulic effort variable 

He . The mass flow m&  is the hydraulic flow variable 

Hf  and the thermal flow variable Tf  is the thermal 

flow Q&  (for thermal conduction) or the enthalpy flow 

H&  (for thermal convection).  
 

As illustration of the multienergy BG modeling let us 
consider the example illustrated by the three-tanks 
system disposed as shown in figure 1.  The tank C1, 
filled by the mass flow 1m& , contains water heated by a 

warming resistance supplying an electric power Q& . The 
tank C2 is filled by the mass flow 2m& .  The valves R1 
and R2 are on-off valves. 
 
 
 
 
 
 
 
 
 
 
The nonlinear multienergy bond graph is drawn on 
figure 2. In the thermodynamic bond graph, the coupled 
power (hydraulic and thermal) exchanged between two 
sub systems is indicated by small rings around the bonds 
and the junctions are vectorials. The ''0'' junctions are 
represented in vectorial form (underlined) to express a 

conservation law of energy in two forms (thermal and 
hydraulic). As the simple junction elements, the 
vectorial junctions are also power conservative. The 
storage item accumulators are modeled by C multiports 
and the valves by R multiports. While the thermofluid 
sources (sources by convection) are modeled in vectorial 
way, the thermal sources by conduction participate only 
in the thermal balance (for more details, see (Thoma and 
Ould-Bouamama, 2000)). Let Hu , Tu , flat

Hy  and flat
Ty  

be respectively the vector of hydraulic inputs, thermal 
inputs, hydraulic flat outputs and thermal flat outputs. 
Consider the under saturated case, where only hydraulic 
sub model HΣ can influence thermal sub model TΣ  
(figure 3), an interesting result can be stated: 
 
 

 
 
 
 
 
 
 
 

 
Theorem 2.  (Under Saturated Regime) A well-insulated 
thermofluid system of order 2n is flat if and only if the 
sub hydraulic model of order n is flat (n is the number of 
potential storage elements, tanks for instance). In this 
case, the thermal flat outputs are those placed at heated 
tanks. 
 
Sufficient Condition: Any thermofluid process can be 
considered as interconnected components. Consider a 
well-insulated thermofluid system of order 2n, the state 
vector t

TH xxx ),(=  is associated to the storage plant 
items (the existent n accumulators), where Hx  and Tx  
are respectively the vector of the stored mass variables 
and the enthalpy variables in the n accumulators. If the 
hydraulic model is flat, there exists a flat output vector at 

Fig. 3. Coupled power exchange (hydraulic-thermal). 

HΣ  

TΣ  

Hu flat
Hy

Tu flat
Ty

R1 

C1

11 H,m && 22 H,m &&

Q&
R2 

C2C3

Fig. 1. Scheme of the system. 
outout Hm && ,

Fig. 2. Multienergy Bond Graph  Model.
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the hydraulic level flat
HH yy :  verifying equation (1) 

with nr ≤ .          
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In the thermodynamic BG, the state variables of an 
accumulator i are related by equation (2), 

iCPiHiT TCxx =                              (2) 
 

where iTx , iHx  and iCT  are respectively the total stored 
enthalpy ( iCH ), the stored mass ( iCm ) and the 
temperature  variables associated to the accumulator i. 
Based on expression (2) and definition (1), we conclude 
that the first condition of flatness for the thermal system 
is equivalent to express iCT  in terms of flat outputs for 
i(1..n). This is possible if one has a thermal sensor (a 
thermal flat output) at each accumulator heated by a 
thermal source (thermal source by conduction or 
convection). 

 
In fact, considering the bond graph model of an 
accumulator (figure 4) one can write: 

 
 
 
 
 
 
 
 
 
 
 

∑+−== + iTiiiCiT SfHHHx 1
&&&&                (3) 

 
             with: 

• iH&  the inlet enthalpy flow (thermal flow by 
convection) acting on the accumulator i:  

CiPii TCmH 1−= &&  

• ∑ iTSf  the sum of the thermal flow source 
variables by conduction or resulting from the 
external thermofluid sources (non installed in 
the circuit) acting on the i component 

• iCPiiiC TCmmH )( 1+−= &&&  which represents the 
thermal energy stocked in the accumulator 

 
This implies: 

 

pi

iTCipi
iC Cm

SfTCm
T

&

& ∑+
= −1                     (4) 

For insulated accumulators; it is clear that without 
thermal sources, the temperature of the outflow is equal 
to that of the inflow. Among the n existent accumulators, 

consider that only q are thermally actuated )( nq ≤ . By 

associating the q thermal flat outputs ( qflat
TT Ryy ∈: ) 

to the temperatures of the heated accumulators, one 
would be able to determine iCT  in terms of the thermal 
flat outputs for i )..1( n . The matrix relating the thermal 
sensors to the vector of temperature CT  has the form: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

where the segments indicate the placement of values 1. 
Using equations (2) and (4), one obtains: 
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with  Θ  and  Ψ  two nonlinear functions.  

 
Necessary Condition: For the simple reason that the sub 
hydraulic model is independent from the thermal one in 
the under saturated case, it is obvious that if the sub 
hydraulic model is not flat the global system will not be. 

 
Remark 1. In the thermodynamic BG, flat outputs can 
be easily expressed in terms of real sensors. In fact, all 
the state variables in process engineering can be 
expressed in terms of real sensors of different types 
(effort sensors are those associated to the pressure and 
the temperature in the tanks and the existent hydraulic 
flow sensor measures the hydraulic mass flow m&  across 
a valve or a pipe).  

 
4. APPLICATION 

 
4.1 Flatness for Actuators Monitoring  
 
Consider the monitoring analysis of the actuators of the 
process shown on figure 1. Four cases can be treated 
whether the thermal flow by convection 1H& ( 11 TCm p& , 

1T  is the inlet temperature of tank 1) and 2H& ( 22 TCm p& ) 
are considered as dependent or independent variables 
( 1T  and 2T  are parameters or real actuators (control 
sources)). As illustration of the developed methodology, 
only two cases are considered: 
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Fig. 4.  BG model of an accumulator (integral causality).
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Case 1 ( 1T  and 2T  are parameters) In fact, the first case 
is considered if the temperatures of the inflows are 
constant. While the real actuators are in this case 

11 : mSf & , 23 : mSf &  and the thermal flow by conduction 

QSf &:5 , we will verify that the flat outputs are: 
 

CH mxy 111 == , CH mxy 332 ==  and CT Hxy 113 ==  
 

The corresponding detectors De1, De2 and De3 allow the 
measurement of the pressure (associated with the mass 
stored in tank C1 and C3) and of the temperature 
(associated with specific enthalpy h) of tank C1. Based 
on theorem 1, 11 : mSf & , 23 : mSf &  and QSf &:5  are 
monitorable since we dispose of three sensors placed at 
the flat outputs. 

 
 

Case 2  ( 1T  and 2T  are control sources) In this case the 
corresponding flat outputs are: 
 

CH mxy 111 == , CH mxy 332 == , CT Hxy 113 ==  and 

CT Hxy 224 ==  
 

In this case a new flat output is introduced. The 
corresponding additional thermal sensor 4De measures 
the temperature of tank C2. All the sensors are supposed 
to be ideal and are modeled by using signal bonds 
meaning that no power is transferred. A causality 
assignment precises the types of the sensors, in our case 
all sensors are of effort type. Based on theorem 1, all the 
considered actuators { 11 : mSf & , 23 : mSf & , 12 : HSf & , 

24 : HSf & , QSf &:5 } except 1H&  and Q&   are monitorable. 

In fact, 1H&  and Q&  are “redundant” (they provide the 
same function and represent physically one actuator).  

 
One can check also that in both cases thermal flat 
outputs are those placed at the level of the heated 
accumulators according to theorem 2. In fact each of C1 
and C2 are heated in the second case which explains the 
necessity to add a thermal sensor at C2 level. 

 
4.2 Verification using the State Equations and the ARRs 
      Generation 

 
At the hydraulic level the state equations are written 
from the BG model (figure 2): 
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K1 and K2 are the constant of the valves, A1, A2 and A3 
are the cross section of the tanks (considered uniform) 
and g is the gravity acceleration. Hydraulic flat outputs 
are Hxy 11 =  and Hxy 32 = . 
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From equations (7):  
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This implies:  
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The flatness is therefore verified at the hydraulic level. 
According to theorem 1, while the sub hydraulic model 
is flat the global system will be. In fact, the thermal state 
equations are: 
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Case 1: from equations (10): 

  1
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By using equation 2, the thermal state vectors can be 
obtained while calculating the temperature of each tank:   

 
31 yT C = 311 yCyx pT =⇒  

 



In fact, while the second accumulator is not heated one 
can write: 
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CT3  can be calculated by writing the thermal energy 
equation at tank C3: 
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This implies: 
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The ARRs given by equations (8), (9) and (11) show that 
the boolean signature vectors of the actuators are 
different which coincides with theorem 1. Consequently, 
all the considered actuators 11 : mSf & , 23 : mSf &  and 

QSf &:5 are monitorable. 
 

Case 2: from equation (11):   
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3
2121131 )(
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422142 ),,( yyyyAyH &&& −=                (13) 
 

The ARRs are now given by equations (8), (9), (12) and 
(13). The corresponding signature fault matrix is given 
in table 2. Among the considered actuators { 11 : mSf & , 

23 : mSf & , 12 : HSf & , 24 : HSf & , QSf &:5 }, 1H&  and Q&  are 
not monitorable.  
 

 Signature fault matrix 2 Table  
 
 
ARRs 

 
1m&  

 
2m&  

 
1H&

 

 
2H&

 

 
Q&  

 

1
y

 

 

2
y

 

 

3
y

 

 

4
y

 
ARR1 1 0 0 0 0 1 1 0 0 
ARR2 0 1 0 0 0 1 1 0 0 
ARR3 0 0 1 0 1 1 1 1 0 
ARR4 0 0 0 1 0 1 1 0 1 

 
 

5. CONCLUSION 
 

The thermodynamic systems occur in many dangerous 
processes. The monitoring of such processes is 
consequently interesting. The classical methods are 

based on a complex generation of ARRs. The flatness, 
thanks to its property, is used in the present paper for 
monitoring of actuators of flat thermodynamic 
processes. For flat systems, the study of actuators 
monitoring becomes a question of finding the flat 
outputs. The method is applied to a three-tank 
thermofluid system. For a class of thermofluid 
processes, some of the flat outputs are easily fixed 
(thermal flat outputs) but not all, the further problem is 
to develop a technique that helps in finding flat outputs 
directly from a BG model. 
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