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Abstract: This paper deals with the determination of the conditions for which
the hysteretic Bouc-Wen model is consistent with the physical phenomenon it
is supposed to represent. In particular, we derive the conditions on the model
parameters under which the model is stable, asymptotically dissipative and verifies
the hysteretic property. These conditions are in the form of algebraic inequalities
to be verified by the Bouc-Wen model parameters. Copyright c©2005 IFAC.
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1. INTRODUCTION

To obtain a mathematical description of physical
systems, we may use the laws of physics to derive
appropriate models. For example, we use New-
ton’s laws in mechanical systems and Maxwell’s
laws in electromagnetic systems. The models ob-
tained using the laws of physics often describe the
behavior of the true systems with a reasonable
accuracy. However, in many cases of practical rel-
evance, deriving models using the laws of physics
is not done either because the laws governing the
behavior of the systems are not known or because
the obtained models are too complex to be used
meaningfully. Black-box modelling is an alterna-
tive to physical modelling as it uses simpler math-
ematical models that are supposed to approximate
the behavior of the true process for a relevant
range of input signals. The black-box modelling
consists in choosing a structure of the model that
does not come necessarily from the laws of physics.
Then, using experimental input-output data, the
parameters of the chosen model are tuned to mach
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the behavior of the experimental data. Once ob-
tained a black-box model with numerical values
of its parameters, it is necessary to validate it.
The validation test consists generally in exciting
the true process with an input test signal, and
comparing the obtained experimental output with
the one delivered by the model for the same input.
If the two outputs are close in some appropriate
sense for a relevant class of test inputs, then the
model is claimed to be a “good” approximation of
the physical system to be modelled.

In the case of black-box modelling, the parameters
of the model may not have a physical meaning.
For this reason, it may happen that the model
matches a finite number of experimental input-
output data without sharing some general phys-
ical properties with the real systems. Moreover,
the set of parameters that describes the model
input-output relationship may not be unique. This
means that the experimental validation of the
black-box models may not be enough to guaran-
tee that these models represent adequately the
physical behavior of the real system. Previous
to this experimental validation, we should carry
out a physical validation. This consists in using



mathematical analysis to derive conditions to en-
sure a unique black-box model representation that
shares some general physical properties with the
true system. It is only when this step of physical
validation has been completed that the step of
experimental validation should take place.

In this paper we perform this physical validation
on the so-called Bouc-Wen model (Wen, 1976)
which is used in structural and mechanical en-
gineering as a simple and effective model for a
hysteretic behavior (Foliente, 1995). In this paper
we use mathematical analysis in order to derive
conditions on the Bouc-Wen model so that it is
stable, dissipative, has a hysteretic behavior and is
described by a unique set of parameters. We show
that the physical validation process leads to a
relevant information about the model parameters
range.

2. THE BOUC-WEN MODEL

Consider a physical system with a hysteretic com-
ponent that can be represented by a map x(t) 7→
Φs(x)(t), which is referred to as the “true” hys-
teresis. The so-called Bouc-Wen model represents
the true hysteresis in the form (Wen, 1976):

ΦBW (x)(t) = αkx(t) + (1 − α)Dkz(t) (1)

ż = D−1
(

Aẋ − β|ẋ| |z|n−1z − γẋ|z|n
)

(2)

where ż denotes the time derivative, n ≥ 1,
D > 0, k > 0 and 0 < α < 1. This model was
originally developed in the context of mechanical
systems in which x is a displacement and Φs is
a restoring force (Bouc, 1967). It represents the
hysteretic force Φs(x)(t) as the superposition of
an elastic component αkx and a purely hysteretic
component (1 − α)kDz, in which D > 0 is the
yield constant displacement and α ∈ (0, 1) is the
post to pre-yielding stiffness ratio. The hysteretic
part involves a nondimensional auxiliary variable
z which is the solution of the nonlinear first order
differential equation (2). In this equation, A, β and
γ are nondimensional parameters which control
the shape and the size of the hysteresis loop,
while n is a scalar that governs the smoothness
of the transition from elastic to plastic response.
The Bouc-Wen model is able to capture, in an
analytical form, a range of shapes of hysteretic
cycles which match the behavior of a wide class
of hysteretical systems (Smyth et al, 2002). It
has been used experimentally to model piezo-
electric elements (Low and Guo, 1995), magne-
torheological dampers (Spencer et al, 1997) and
wood joints (Foliente, 1995). The experimentally
obtained models have been used either to predict
the behavior of the physical hysteretic element

(Spencer et al, 1997) or for control purposes (Chen
et al, 1999).

3. STABILITY PROPERTIES OF THE
MODEL

3.1 The bounded input-bounded output stability

property

In this section we focus on the so-called bounded
input-bounded output (BIBO) stability property
of the model. By BIBO stability we mean that,
for each bounded input, the output of the system
is bounded. Experimental evidence shows that
many hysteretic systems of practical relevance in
mechanical and structural engineering are BIBO,
that is their output is bounded for a bounded
input. The Bouc-Wen model should reproduce
this property to represent adequately the behav-
ior of the true hysteresis. The physical validation
consists in using mathematical analysis to derive
the conditions under which this bounded input-
bounded output property is verified by the Bouc-
Wen model.

We state the problem under study as follows:
given the parameters 0 < α < 1, k > 0, D > 0, A,
β, γ and n ≥ 1, find the set of initial conditions
z(0) for which the Bouc-Wen model (1)-(2) is
BIBO. Note that when this set is empty, this
means that the Bouc-Wen model is not BIBO.
The solution of this problem will lead to classify
different sets of parameters and initial conditions
and, additionally, to determine explicit bounds for
the hysteretic variable z(t).

To this end, let us introduce the following sets:

Ωα,k,D,A,β,γ,n = {z(0) ∈ R s.t ΦBW is BIBO}

ΩA,β,γ,n = {z(0) ∈ R s.t z(t) is bounded

for any C1 bounded input x(t)}

Ω?
A,β,γ,n = {z(0) ∈ R s.t z(t) is bounded

for any C1 input x(t)}

The following result derived in (Ikhouane et al,
2005) characterizes the different combinations of
initial condition and parameters that lead to a
Bouc-Wen model that is BIBO.

Theorem 1. Let x(t), t ∈ [0,∞) be a C1 input
signal and

z0 , n

√

A

β + γ
and z1 , n

√

A

γ − β
. (3)

Then, the solution z(t) of the differential equation
(2) exists over t ∈ [0,+∞). Moreover, Table 1
holds.



Table 1. Classification of the BIBO
Bouc-Wen models

CASE ΩA,β,γ,n |z(t)| bound Class

A > 0 −β < γ ≤ β R max (|z (0)| , z0) I

0 ≤ β < γ [−z1, z1] max (|z (0)| , z0) II

A < 0 −β ≤ γ < β R max (|z (0)| , z1) III

γ < −β ≤ 0 [−z0, z0] max (|z (0)| , z1) IV

A = 0 −β ≤ γ ≤ β R |z (0)| V

ALL OTHER CASES ∅

Furthermore we have Ω?
A,β,γ,n = ΩA,β,γ,n =

Ωα,k,D,A,β,γ,n

Theorem 1 shows that the Bouc-Wen model is
BIBO only for the five classes of Table 1. For any
combination of initial condition and parameters
that does not belong to the classes I-V, the cor-
responding Bouc-Wen model delivers unbounded
outputs for some bounded inputs, and thus, can-
not describe a real physical hysteretic system.

This result shows that, using mathematical anal-
ysis, the process of physical validation led to an
extra information on the model; namely that there
are only five classes of Bouc-Wen model that may
represent a physical behavior of the true hystere-
sis.

3.2 The equilibrium point stability property

In this section, the hysteretic system is assumed to
be part of a second-order mechanical/structural
system that has an equilibrium point at zero.
The existence of an equilibrium point means that,
if the initial conditions of the system are zero,
then this system remains at zero for all times. In
particular, the output of the true hysteresis should
be identically zero. The physical validation uses
the equations of the movement of the second-order
system to show that, for the model to deliver a
zero output, its initial condition is to be zero.

We consider a structural isolation scheme, as il-
lustrated in Figure 1, which is modelled as 1
degree-of-freedom system with mass m > 0 and
viscous damping c > 0 plus a restoring force Φ
characterizing a hysteretic behavior of the isolator
material. This system is described by the second
order differential equation

mẍ + cẋ + Φ(x, t) = f(t), (4)

with initial conditions x(0) and ẋ(0) and excited
by a force f(t), like the one of the form −ma(t)
in the case of an earthquake with ground accel-
eration a(t). The restoring force is assumed to be
described by the Bouc-Wen model:

Φ(x)(t) = αkx(t) + (1 − α)Dkz(t), (5)

ż = D−1
[

Aẋ − β|ẋ| |z|n−1z − γẋ|z|n
]

,(6)

where n ≥ 1, D > 0, k > 0 and 0 < α <
1. Consider the system (4)-(6) with x(0) = 0,

Fig. 1. Hysteretic isolation scheme (a) and its
physical model (b).

ẋ(0) = 0, f(t) ≡ 0 and assume that z(0) 6=
0. By continuity of the solutions of (4)-(6), the
signal z(t) will be nonzero at least during some
time interval [0, t1). This implies that in the time
interval (0, t1) the signals x(t) and ẋ(t) are not
identically zero. In this case, the Bouc-Wen model
has delivered non-identically zero signals x and ẋ
starting from zero initial conditions x(0) = 0 and
ẋ(0) = 0. This will unlikely be the case for the
real hysteresis as, in general, the coordinates are
chosen in such a way that the point with x(0) = 0
and ẋ(0) = 0 is an equilibrium position for the real
hysteretic system under free motion. With z(0)
set to zero, it can be seen from Table 1 that the
hysteretic part z(t)of the model is always zero for
the class V. This means that this class is irrelevant
in practice.

4. THE ENERGY DISSIPATION PROPERTY

In this section, we consider that the hysteretic sys-
tem is part of a second-order mechanical/structural
system in free motion as in Figure 1. An in-
depth study of the thermodynamic properties of
the Bouc-Wen model using the concept of internal
energy has been done in reference (Erlicher and
Point, 2004). In this section, we are specifically
interested in the dissipation of the mechanical
energy associated to the movement of the iso-
lated mass. In this case, we cannot expect that
the mechanical energy will be decreasing all the
time. However, we expect from the true hysteretic
system to verify that the mechanical energy at
any time is no more than its initial mechanical
energy. This property needs to be verified by the
Bouc-Wen model in order to be considered as an
adequate model candidate.

Write the system (4)-(6) as

mẍ + cẋ + αkx + (1 − α)Dkz = 0 (7)

where z is the solution of the differential equation
(6). At each instant t, the total energy E(t) of (7)



is the sum of its kinetic energy
1

2
mẋ(t)2 and its

potential elastic energy
1

2
αkx(t)2. That is

E(t) =
1

2
mẋ(t)2 +

1

2
αkx(t)2. (8)

We introduce some definitions.

Definition 1. The Bouc-Wen model defined by
its parameters (A, β, γ, n,D, α, k) is said to be
asymptotically dissipative if for every initial con-
ditions (x(0), ẋ(0)), the final energy of the system
(4)-(6) is less than its initial energy. That is we
have E(∞) < E(0) whenever E(0) 6= 0.

Definition 2. A class of the Table 1 is said to be
asymptotically dissipative if all its elements are
asymptotically dissipative.

Definition 3. The Bouc-Wen model defined by its
parameters (A, β, γ, n,D, α, k) is said to gener-
ate energy if there exist some initial conditions
(x(0), ẋ(0)) and some finite time t0 such that
E(t0) > E(0).

With the definitions above we now state the
following result (Ikhouane et al, 2004a).

Theorem 2. Consider the classes I-V of Table 1.
Then, we have the following:

(i) The classes I and II are asymptotically dissi-
pative.

(ii) The classes III and IV contain an infinite
number of elements that generate energy.

Theorem 2 shows that the classes I and II are in-
deed asymptotically dissipative and thus may rep-
resent the physical behavior of a true hysteresis.
The classes III and IV contain an infinite number
of elements which generates energy. This means
that both classes are of little practical interest.

The physical validation of the model gave us use-
ful information on its parameters. They should
be chosen in such a way that the model is BIBO
and dissipative. Due to the fact that the physical
validation of the Bouc-Wen has only been done
recently (Ikhouane et al, 2004a), some previous
works used incorrect values for the model param-
eters. For example, in (Smyth et al, 1999) the
following values have been used: β = 0.1 and
γ = −1, while (Kyprianou et al, 2001) used the
values β = 1.5 and γ = −1.5. In both cases we
do not have β + γ > 0 as should be the case
for Classes I and II of Table 1. This means that
both references used Bouc-Wen models that are
not BIBO and thus do not describe a physical
behavior.

5. THE UNIQUENESS OF THE
DESCRIPTION

In this section we use the results obtained above
to give a new description of the Bouc-Wen model.
We show that this model uses more parameters
than really needed, and we derive a description of
the model that uses exactly the needed number of
parameters.

In this section, we consider Bouc-Wen models that
belong to classes I or II. As has been shown in the
previous sections, they are BIBO and asymptoti-
cally dissipative, and thus may represent a phys-
ical reality. Consider two Bouc-Wen models (1)-
(2) whose parameters are such that n2 = n1 = n,
A2 = A1, β2 = νnβ1, γ2 = νnγ1, D2 = νD1,
α2 = α1, k2 = k1 where ν is a positive constant,
and with an initial condition z2(0) = z1(0) = 0.
It can be checked that both models belong to
the same class according to Table 1, and for any
input signal x(t) they deliver exactly the same
output ΦBW (t). This means that the input-output
behavior of a Bouc-Wen model is not described
by a unique set of parameters {α, k,D,A, β, γ, n}.
For this reason, it is necessary to elaborate some
equivalent “normalized” model whose parameters
define in a unique way the input-output behavior

of the model. To this end, define w(t) =
z(t)

z0

so

that the model (1)-(2) can be written as:

ΦBW (x, t) = κxx(t) + κww(t), (9)

ẇ(t) = ρ
(

ẋ(t) − σ|ẋ(t)| |w(t)|n−1w(t)

+(σ − 1)ẋ(t)|w(t)|n) (10)

where

ρ =
A

Dz0

> 0, σ =
β

β + γ
≥ 0, κx = αk > 0,

κw = (1 − α)Dkz0 > 0. (11)

Note that since the Bouc-Wen model is of classes
I or II, it follows from Table 1 that β ≥ 0 and β +
γ > 0. We call equations (9)-(10) the normalized
form of the Bouc-Wen model. Note that since
the initial condition w(0) is such that w(0) = 0
then, by Theorem 1, |w(t)| ≤ 1 for all t ≥ 0.
This means that the variable z(t) has been scaled
to unity. It can be checked that the normalized
form of the Bouc-Wen model defines a bijective
relationship between the input-output behavior
of the model and its parameters. Note that the
normalized form of the Bouc-Wen model is exactly
equivalent to its standard form. Indeed, for any
input x(t), both forms deliver exactly the same
output ΦBW (t) taking into account that we have

w(0) =
z(0)

z0

= 0. The normalized model contains

only five parameters while the standard one con-



tains seven parameters. This means that two pa-
rameters of the standard model are superfluous.

The class I of Table 1 corresponds to σ ≥
1

2
while

the class II corresponds to 0 ≤ σ <
1

2
. Note that

considering that the Bouc-Wen model belongs to
classes I or II was instrumental in getting ρ > 0
and σ ≥ 0 in equation (11).

6. THE HYSTERETIC PROPERTY

In this section we use the fact that, in a real
hysteretic system, the output depends on the sign
of the derivative of the input. The Bouc-Wen
model is to comply with this property to represent
appropriately a hysteretic behavior.

6.1 Amplitude of the input

Consider that the input signal x(t) is bounded
and denote Xmax its maximal amplitude in ab-
solute value. If Xmax is much larger than the
ratio κw/κx, then it follows from equation (9)
that the largest value κxXmax of the linear term
κxx(t) is much larger than the largest value κw

of the nonlinear term κww(t). This means that
the behavior of ΦBW versus x becomes almost
linear for large values of the input x and that the
hysteretic term κww(t) will have some influence
on ΦBW (t) only for small values of the input x(t).
In particular, for large values of the input signal
x(t), the corresponding hysteretic output ΦBW (t)
will be independent of the sign of the derivative
ẋ(t). This behavior has not been reported ex-
perimentally for real hysteretic systems. For this
reason, we consider that the Bouc-Wen model
does not represent a physical hysteretic behavior if

Xmax �
κw

κx

. We thus consider that the Bouc-Wen

model may represent a physical behavior only for

those signal inputs such that Xmax ≤
κw

κx

.

6.2 The case σ = 0

We show in this section that the value σ =
0 in equation (10) has to be rejected. To this
end, the following result is useful (Ikhouane and
Rodellar, 2004b):

Lemma 1. Take x(t) = Xmax cos(ωt) for some
ω > 0, with w(0) = 0. Then we have |w(t)| < 1
for all t ≥ 0.

Assume that we have σ = 0. Then equation (10)
becomes

ẇ(t) = ρ (1 − |w(t)|n) ẋ(t) (12)

We define the function ξ as

ξ(v) =

v
∫

0

du

1 − |u|n
(13)

for all scalars −1 < v < 1. We can see that
ξ is a bijection from the interval (−1, 1) to R.
Denoting ζ its inverse function it follows from
equations (12)-(13) and Lemma 1, that we have
w(t) = ζ (ρx(t) + η) for all t ≥ 0, where η is an
integration constant. This means from equation
(9) that the relationship between the hysteretic
output ΦBW and the input x does not depend on
the sign of ẋ which is contrary to the experimen-
tal observations for hysteretic systems. Thus the
value σ = 0 does not correspond to the description
of a physical hysteretic element.

7. SUMMARY OF THE OBTAINED RESULTS
AND CONCLUSIONS

With the results above, we conclude that the
Bouc-Wen model needs to be presented under
its normalized form (9)-(10) so that its input-
output behavior is described uniquely with its
parameters. To represent a physical behavior,
these parameters need to be such that ρ > 0,
σ > 0, κx > 0, κw > 0 and n ≥ 1. The
initial condition should be w(0) = 0. This implies
that the variable w(t) satisfies |w(t)| ≤ 1 for all
t ≥ 0. Moreover, the Bouc-Wen model is valid
only for those inputs whose maximal value Xmax

(in absolute value) is such that Xmax ≤
κw

κx

.

In this paper we have first analyzed the stability of
the Bouc-Wen model since most of the hysteretic
systems, in practice, are BIBO stable. The result
of the mathematical analysis is that only five
classes of Bouc-Wen models are stable. Further-
more, the initial condition of the model has to
be zero. We have then considered the energy dis-
sipation property inherent to hysteretic systems.
The physical validation has shown that only the
classes I and II are asymptotically dissipative.
A third physical property inherent to hysteretic
systems is that the output depends on the sign
of the derivative of the input. The mathematical
analysis has shown that, for the Bouc-Wen model
to comply with this property, the size of the input
should be less than a value that depends on the
model parameters. Moreover, one of the param-
eters cannot be zero. These findings have led to
a normalized form of the Bouc-Wen model which
has a minimal number of parameters that describe
uniquely the input-output behavior.

The information that we have derived on the
Bouc-Wen model did not necessitate any kind



of experimental validation. It only used mathe-
matical analysis in order to express the model
in an appropriate form (the normalized one) and
establish a range of validity both for the model
parameters and the input signals. The next step
would be an experimental validation. This means
tuning the parameters of the Bouc-Wen model
(presented under its normalized form) so that the
input-output behavior of the model matches that
of the true system for some relevant experimental
test inputs.
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