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Abstract: This paper addresses the problems of the design of anti-windup schemes
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conditions are formulated in terms of linear matrix inequalities by using Finsler’s
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1. INTRODUCTION

During the past years, the problem of stabiliza-
tion for linear systems subject to amplitude and
dynamics restricted actuators and/or sensors have
attracted the attention of control community, due
to its practical interest and its inherent difficulties
(see, for example, (Bernstein, 2001)). The studies
concerning these systems have been done in terms
of modelling, properties analysis (as stability and
performance analysis) or still control design prob-
lem (Gomes da Silva Jr. et al., 2003). Most of
these theoretical studies are motivated by the fact
that physical, safety or technological constraints
generally induce that the actuators and sensors
cannot provide unlimited amplitude signal neither
unlimited speed of reaction. The control problems
of combat aircraft prototypes and launchers offer
interesting examples of the difficulties due to these
major constraints (Murray, 1999). Neglecting ac-
tuator and sensor limitations can be source of

undesirable even catastrophic behaviors for the
closed-loop system (as the lost of the stability).

Moreover, the case of actuator saturation has been
addressed in much details ((Kapila and Grigo-
riadis, 2002) and references therein). Few re-
sults concern the case of sensor saturation. Hence
among these results one can cite the studies of the
effects of sensor saturation on plant observability
(Koplon et al., 1994). In (Kreisselmeier, 1996),
the global stabilization of a linear SISO system
is carried out via the use of dead beat controller.
In (Cao et al., 2003), the authors use the circle
criterion to design an output H∞ feedback con-
troller for linear systems with sensor nonlinearity.
If few results are available on systems with sensor
actuator still less results concern the case of sys-
tems with both actuator and sensor limitations.
In (Fliegner et al., 2000), adaptive integral con-
trol design for linear systems with actuator and
sensor nonlinearities is addressed by considering



the asymptotic stability of the open-loop. See also
(Glattfelder and Schaufelberger, 2003), in which
different methods of analysis and synthesis are
presented (like the PID controllers design).

The anti-windup techniques consist in taking into
account the effects of saturation in a second stage
after previous design performed disregarding the
actuator limitations. The idea is to introduce
some control modification in order to recover, as
much as possible the properties induced by the
previous design carried out for the unsaturated
system. In particular, anti-windup schemes have
been successfully applied in order to minimize
the windup due the integral action in PID con-
trollers. In this case, most of the related liter-
ature focuses on the performance improvement
in the sense of avoiding large and oscillatory
transient responses (see, among others, (Åström
and Rundqwist, 1989)).Moreover, the influence
of the anti-windup schemes in the stability and
the performances of the closed-loop system has
been also studied (see, for example, (Barbu et
al., 2000), (Kothare and Morari, 1999)). Several
results on the anti-windup problem are concerned
with achieving global stability properties. Since
global results cannot be achieved for open-loop
unstable linear systems in the presence of actuator
saturation, local results have to be developed. In
this context, a key issue concerns the determina-
tion of domains of stability for the closed-loop
system by noting that the basin of attraction is
modified by the anti-windup loop.

More recently, in (Cao et al., 2002), (Gomes da
Silva Jr. and Tarbouriech, 2003), (Teel, 1999), in
the ACC03 Workshop “T-1: Modern Anti-windup
Synthesis” or in the ACC04 (Session FrP04 “Anti-
windup”), some constructive conditions are pro-
posed both to determine suitable anti-windup
loops and to quantify the closed-loop region of sta-
bility in the case of amplitude saturation actuator.
Differently from the references cited above, in this
paper we focus our attention on linear systems
with amplitude saturation on actuator and sensor,
and bounded controlled outputs. Our aim is the
design of the suitable anti-windup gains in order
to ensure the closed-loop stability for regions of
admissible initial states as large as possible. Based
on the modelling of the closed-loop system re-
sulting from the controller plus the anti-windup
loop as a linear system with dead-zone nested
nonlinearities, original constructive stability con-
ditions are directly formulated as LMI conditions.
Moreover, in order to use in the anti-windup loops
some unmeasured signals, a solution based on the
addition of an observer step is considered. Thus,
in order to address inherent structural constraints
on some decision variables the Finsler’s Lemma is
used.

Notation. For any vector x ∈ <n, x � 0 means that

all the components of x, denoted x(i), are nonnegative.

For two vectors x, y of <n, the notation x � y means

that x(i) − y(i) ≥ 0, ∀i = 1, . . . , n. 1 and 0 denote

respectively the identity matrix and the null matrix of

appropriate dimensions. A(i), i = 1, ..., m, denotes the ith

row of matrix A ∈ <m×n. For two symmetric matrices,

A and B, A > B means that A − B is positive definite.

A′ denotes the transpose of A. For any vector u of <m

one defines each component of satu0 (u) by satu0 (u(i)) =

sign(u(i))min(u0(i), |u(i)|), with u0(i) > 0, i = 1, ..., m.

2. PROBLEM STATEMENT

The system under consideration is described by:

ẋ = Ax + Bv
y = saty0(Cx)
v = satu0(u)
z = C2x + D2v

(1)

where x ∈ <n, v ∈ <m, y ∈ <p and z ∈ <l

are the state, the input, the measured output
and the controlled output vectors, respectively.
The vectors u0 and y0 are the positive saturation
levels. A, B, C, C2 and D2 are real constant
matrices of appropriate dimensions.

Let us consider the controller dynamics in <nc :

η̇ = Acη + Bcuc

yc = Ccη + Dcuc
(2)

where Ac, Bc, Cc, Dc are matrices of appropri-
ate dimensions. Thus, such a controller has been
designed such that the linear closed-loop system
resulting from the interconnection conditions

v = u = yc ; uc = Cx (3)

is asymptotically stable. Note that the dynamics
controller (2) has been designed for system (1)
without saturation (as described in (3)).

Some windup problems arise when saturations
occur, that is when the previous linear intercon-
nection is replaced by the real interconnection:

u = yc ; v = satu0(yc) ; uc = saty0(Cx) (4)

Hence, from the above description, the complete
closed-loop system reads:

ẋ = Ax + Bsatu0(Ccη + Dcsaty0(Cx))
η̇ = Acη + Bcsaty0(Cx) (5)

The set of measured variables of this system for
anti-windup purpose are v, yc and y. In order to
avoid the undesirable effects of the windup, or at
least to mitigate them, we want to build a loop of
anti-windup. Thus, the strategy consists in adding
the first term

Ec(satu0(yc)− yc) (6)



in the dynamics of the controller. Another term
that we can add is related to the output sat-
uration, but the only available measure for the
system is y = saty0(Cx). Therefore, one cannot
use directly the difference saty0(Cx)−Cx. A way
to use the difference due to the output saturater
is to build an observer in order to consider an
estimate of this difference. Hence, an observer of
the system can be described as:

˙̂x = Ax̂ + Bv + L(saty0(Cx̂)− saty0(Cx)) (7)

with the error
ε = x̂− x (8)

From (7)-(8), the anti-windup strategy consists in
adding also the term:

Fc(saty0(Cx̂)− Cx̂) (9)

in the dynamics of the controller. Thus, consid-
ering the dynamic controller and these additional
anti-windup loops, the closed-loop system reads:

ẋ = Ax + Bsatu0(Ccη + Dcsaty0(Cx))
η̇ = Acη + Bcsaty0(Cx) + Ec(satu0(yc)− yc)

+Fc(saty0(Cx + Cε)− (Cx + Cε))
ε̇ = Aε + L(saty0(Cx + Cε)− saty0(Cx))
yc = Ccη + Dcsaty0(Cx)

(10)

In order to deal with system (10), let us define the
two connected nonlinearities φy0 and φu0 , and the
nonlinearity φε

y0
:

φy0 = saty0(Cx)− Cx (11)

φu0 = satu0(yc)− yc

= satu0(Ccη + DcCx + Dcφy0)
−(Ccη + DcCx + Dcφy0)

(12)

φε
y0

= saty0(Cx + Cε)− (Cx + Cε) (13)
Thus, by defining the extended vectors

ξ =
[
x′ η′ ε′

]′ ∈ <2n+nc

Φ =
[
φ′y0

φ′u0

]′ ∈ <p+m (14)

and the following matrices

A =

 A + BDcC BCc 0
BcC Ac 0
0 0 A

 ∈ <(2n+nc)×(2n+nc)

B =

 BDc B
Bc 0
0 0

 ∈ <(2n+nc)×(p+m)

R1 =

 0
0
1

 ∈ <(2n+nc)×n; R2 =

 0
1
0

 ∈ <(2n+nc)×nc

R3 =
[
0
1

]
∈ <(p+m)×m; R4 =

[
1
0

]
∈ <(p+m)×p

C1 =
[
0 0 C

]
∈ <p×(2n+nc)

C2 =
[
C2 + D2DcC D2Cc 0

]
∈ <l×(2n+nc)

D2 =
[
D2Dc D2

]
∈ <l×(m+p)

K =
[

C 0 0
DcC Cc 0

]
∈ <(p+m)×(2n+nc)

C3 =
[
C 0 C

]
∈ <p×(2n+nc)

(15)

the closed-loop system reads:

ξ̇ = (A + R1LC1)ξ + (B + R2EcR′3 − R1LR′4)Φ
+(R2Fc + R1L)φε

y0

z = C2ξ + D2Φ
(16)

The problem to compute Ec and Fc for enlarging
the basin of attraction of the closed-loop system,
whereas some performance described with respect
to the controlled output is satisfied, can be sum-
marized as follows.
Problem 1. Determine anti-windup gains Ec,
Fc, an observer gain L and a set S0 such that:
1. (Stability) The asymptotic stability of the
closed-loop system (16) is ensured for any[
x(0)′ η(0)′ ε(0)′

]′ ∈ S0, where S0 is as large as
possible.
2. (Performance) For any

[
x(0)′ η(0)′ ε(0)′

]′ ∈
S0 the controlled output signal z is bounded and
takes values in the set Z0 defined by:

Z0 = {z ∈ <l;−z0 � z � z0, z0(i) > 0} (17)

Note that the satisfaction of point 1 of Problem 1
will assure the convergence of the observer.

3. THEORETICAL ANTI-WINDUP
CONDITIONS

Let us consider the generic nonlinearity ϕ(v) =
satv0(v)− v, ϕ(v) ∈ <m and the following set:

S(v0) = {v ∈ <m, w ∈ <m;−v0 � v − w � v0}
(18)

Lemma 1. (Tarbouriech et al., 2004) If v and w
are elements of S(v0) then the nonlinearity ϕ(v)
satisfies the following inequality:

ϕ(v)′T (ϕ(v) + w) ≤ 0 (19)

for any diagonal positive definite matrix T ∈
<m×m.

Moreover, in order to treat in a potentially less-
conservative framework the possibility of consid-
ering structural conditions, the technique devel-
oped in the sequel is based upon the use of the
Finsler’s Lemma, recalled below (de Oliveira and
Skelton, 2001).
Lemma 2. Consider a vector ζ ∈ <n, a symmet-
ric matrix P ∈ <n×n and a matrix B ∈ <m×n,
such that rank(B) < n. The following statements
are equivalent:

(i) ζ ′Pζ < 0, ∀ζ such that Bξ = 0, ζ 6= 0.
(ii) (B⊥)′PB⊥ < 0.

(iii) ∃µ ∈ < : P − µB′B < 0.
(iv) ∃F ∈ <n×m : P + FB + B′F ′ < 0.

The following proposition can then be stated
based upon the use of Lemmas 1 and 2.



Proposition 1. If there exist a symmetric pos-
itive definite matrix W , matrices Y1, Y2, Y3, X,
Z1, Z2, F21, F1j, F2j, j = 4, ..., 9 and two diagonal
matrices S1, S2 satisfying 1 :[

M1 + N1 + N ′
1 M2 − F1 + N ′

2

? M3 − F2 − F ′2

]
< 0 (20) W Y ′1 WK′(i) − Y ′1(i)

? sym(S1 + R3Y2R′4) S1R4D
′
cR′3(i) − R4Y

′
2R′3(i)

? ? u2
1(i)


≥ 0, i = 1, ...,m + p

(21)[
W WC′3(i) − Y ′3(i)
? y2

0(i)

]
≥ 0, i = 1, ..., p (22) W Y ′1 WC′2(i)

? sym(S1 + R3Y2R′4) + R4Y
′
2R′3 S1D′2(i)

? ? z2
0(i)

 ≥ 0

i = 1, ..., l
(23)

with

M1 =

[
AW + WA′ BS1 + R2Z1R′3 − Y ′

1 R2Z2 − Y ′
3

? −sym(S1 + R3Y2R′4) 0
? ? −2S2

]
M2 =

[
WC′1 0 0

? 0 0

? ? 0

]
; M3 =

[
0 −R′4S1 S2

? 0 0

? ? 0

]

F1 =


[

0

1

]
F21 F14 F17

0 F15 F18

0 F16 F19

 ; F2 =

[
F21 F24 F27

0 F25 F28

0 F26 F29

]

N1 =


[

0

1

]
X′R′1 F14 F17

0 F15 F18

0 F16 F19

 ; N2 =

[
X′R′1 F24 F27

0 F25 F28

0 F26 F29

]

then the anti-windup gains Ec = Z1R′3S
−1
1 R3 =

Z1S
−1
12 (if we denote S1 = diag(S11, S12)), Fc =

Z2S
−1
2 , the observer gain L = X(F ′21)

−1 and the
set S0 = {ξ ∈ <2n+nc ; ξ′W−1ξ ≤ 1} are solutions
to Problem 1.

Proof. According to the nonlinearities Φ and φε
y0

,
Lemma 1 applies as follows.
• In the case of Φ, one considers:

ν = Kξ + R3DcR′4Φ
w = G1ξ + R3G2R′4Φ
v0 = u1 =

[
y′0 u′0

]′ ∈ <p+m

• In the case of φε
y0

, one considers:

ν = C3ξ;w = G3ξ; v0 = y0

Consider G1 = Y1W
−1, G2 = Y2R′4S

−1
1 R4 =

Y2S
−1
11 , if we denote S1 = diag(S11, S12), and

G3 = Y3W
−1. Then, one has to prove that the

set S0 = {ξ ∈ <2n+nc ; ξ′W−1ξ ≤ 1} is included
in S(u1) and in S(y0). For this, one has first to
satisfy, ∀i = 1, ...,m + p:[

ξ
Φ

]′ [ K′(i) −G′
1(i)

R4(D′
c −G′

2)R′3(i)

][
K′(i) −G′

1(i)

R4(D′
c −G′

2)R′3(i)

]′ [
ξ
Φ

]
≤ u2

1(i)

1 The symbol ? stands for symmetric blocks. Moreover,

sym(A) = A + A′.

for ξ and Φ such that
{

ξ′W−1ξ ≤ 1

ΦT (Φ + G1ξ + R3G2R′4Φ) ≤ 0
.

Thus, the satisfaction of relation (21) ensures that
the above condition is satisfied and therefore that
the set S0 is included in S(u1). By using the
same type or arguments one can prove that the
satisfaction of relation (22) guarantees that the
set S0 is included in S(y0).

Consider the quadratic Lyapunov function V (ξ) =
ξ′Pξ with P = P ′ > 0. Its time-derivative writes:

V̇ (ξ) = ξ′((A + R1LC1)′P + P (A + R1LC1))ξ
+2ξ′P (B + R2EcR′3 − R1LR′4)Φ
+2ξ′P (R2Fc + R1L)φε

y0

and therefore satisfies for all ξ ∈ S0:

V̇ (ξ) ≤ V̇ (ξ)− 2Φ′T1(Φ + G1ξ + R3G2R′4Φ)
−2φε ′

y0
T2(φε

y0
+ G3ξ)

Using some algebraic manipulations, this last in-
equality can write as

[
ξ′P Φ′T1 φε ′

y0
T2

]
M

 Pξ
T1Φ

T2φ
ε
y0


with

M = M1 + NM ′
2 + M2N

′ + NM3N
′

=
[
1 N

] [
M1 M2

M ′
2 M3

] [
1
N ′

]
where W = P−1, S1 = T−1

1 , S2 = T−1
2 , N = R1L 0 0

? 1 0
? ? 1

 and matrices M1, M2, M3 are previ-

ously defined. Thus, in order to satisfy V̇ (ξ) < 0
one has to satisfy M < 0. By applying Lemma
2, the satisfaction of M < 0 is equivalent to find
multipliers F1 and F2 such that[

M1 M2

M ′
2 M3

]
+

[
F1

F2

] [
N ′ −1

]
+

[
N
−1

] [
F ′1 F ′2

]
< 0

By choosing matrices F1 and F2 as

F1 =

[
F11 F14 F17

0 F15 F18

0 F16 F19

]
; F2 =

[
F21 F24 F27

0 F25 F28

0 F26 F29

]

with F11 =
[
0
1

]
F21, and by using the change of

variables LF ′21 = X, the satisfaction of relation
(20) means that for all ξ ∈ S0, one gets V̇ (x) < 0.
Since this reasoning is valid for all ξ ∈ S0, ξ 6= 0,
one can conclude that the set S0 is a set of
asymptotic stability for the closed-loop system.
Moreover, the satisfaction of relation (22) guar-
antees that for all ξ ∈ S0 the controlled output
z remains bounded in the set Z0. Therefore, one
can conclude that the conditions of Proposition 1
allows to exhibit solutions to Problem 1. 2

Proposition 1 provides solutions to Problem 1 in a
local context. In the absence of controlled output



limitations (i.e. z0 →∞) and provided that some
open-loop stability assumptions are verified for
matrix A, the global asymptotic stability can be
addressed as follows.
Corollary 1. If there exist a symmetric positive
definite matrix W , matrices X, Z1, Z2, F21, F1j,
F2j, j = 4, ..., 9 and two diagonal matrices S1, S2

satisfying relation (20) with

M1 =

[
AW + WA′ BS1 + R2Z1R′3 −WK′ R2Z2 −WC′3

? −sym(S1 + R3DcR′4S1) 0

? ? −2S2

]
then the anti-windup gains Ec = Z1R′3S

−1
1 R3 =

Z1S
−1
12 (if we denote S1 = diag(S11, S12)), Fc =

Z2S
−1
2 , the observer gain L = X(F ′21)

−1 are such
that the global asymptotic stability of the closed-
loop system is ensured.

Proof. By considering G1 = K, G2 = Dc, and
G3 = C3 one gets S(u1) = <2n+nc and S(y0) =
<2n+nc , and therefore, by applying Lemma 1 it
follows that the sector conditions relative to the
nonlinearities Φ and φε

y0
are globally satisfied,

that is, for all ξ ∈ <2n+nc . 2

An important feature of the proposed conditions
resides in the separation between the Lyapunov
matrix P , which appears through the matrix W ,
and the decision variable L. Furthermore the ma-
trix F21 is a general (nonsingular) matrix, that
is it does not present any structural constraint
such that the symmetry. Such a feature allows to
cope with other constraints on the variables. This
results appears to be potentially less conservative
than in the quadratic case (without the use of
Lemma 2) due to the fact that here the Lyapunov
matrix P remains structurally unconstrained (dif-
ferently from the quadratic case where matrix P
has to be diagonal, even to be related to diagonal
matrices S1 and S2).

4. NUMERICAL ISSUES

4.1 Discussion

It is worth to notice that the conditions in Propo-
sition 1 are under LMI form in the decision vari-
ables. This fact is due to use of model (16) with
Lemma 1. The use of classical sector condition as
in (Gomes da Silva Jr. et al., 2002) or of polytopic
model as in (Cao et al., 2002) does not lead to
LMI conditions but to BMI conditions in the case
of only actuator saturation. It is not difficult to
see that this same drawback will appear when
we consider in plus the saturation on the sensor
and the addition of an observer loop. Thus, in
these cases, the exhibition of anti-windup gains
associated to an observer gain maximizing the
estimate of the region of stability should be done
by means of iterative shemes. Such solutions are

very sensitive to the initial considered guess and
local sub-optimality can be guaranteed. In the
current paper, the solution does not require initial
guesses neither iterative schemes.

Moreover, the extension of our approach to pro-
vide global asymptotic stability condition (in the
case where the open-loop system is stable and
when we do not consider bounds on the controlled
output signal) is direct as shown in Corollary 1.
When a polytopic model is considered it is not
possible to exhibit a condition ensuring global
stability. This is due to the local character of such
a model for representing the saturated system.

The case without observer can be considered. In
this case, the closed-loop systems reads:

ζ̇ = A1ζ + (B1 + R21EcR′3)Φ
z = C21ζ + D2Φ

(24)

where ζ =
[
x′ η′

]′ ∈ <n+nc and matrices A1, B1,
R21 and C21 are the appropriate parts of matrices
defined in (15).
4.2 Optimization issues

For design purposes, according to Proposition 1,
a set Ξ0 defined by its vertices:

Ξ0 = co{vj , j = 1, ..., r, vj ∈ <2n+nc}

may be used as a shape set to serve for optimizing
the size of the set S0. Two cases can be addressed
if we consider the set Ξ0 and a scaling factor β.
Thus, we want to satisfy β Ξ0 ⊂ S0. In case
1, this problem reduces to a feasibility problem
with β = 1. In case 2, the objective consists
in maximizing β, which corresponds to define
through Ξ0 the directions in which we want to
maximize S0. Thus, the problem of maximizing
β can be accomplished by solving the following
convex optimization problem:

minµ
subject to relations (20), (21), (22), (23)[

µ v′j
vj W

]
≥ 0, j = 1, . . . , r

(25)

Considering β = 1/
√

µ, the minimization of µ
implies the maximization of β.

4.3 Illustrative example

Consider system (1) described by the following
data:

A = 0.1;B = 1;C = 1; C2 = 1;D2 = 1
u0 = 0.5; y0 = 5

with the simple PI controller defined by

Ac = 0;Bc = −0.2;Cc = 1;Dc = −2

By solving the optimization problem (25), where
Ξ0 is the hypercube centered in 0 and with vertices
components equal to 1 or −1, one gets Ec =



0.2736, Fc = 0.0015, L = −1.0001, β = 1.6491
with a volume of the ellipsoid V = 475.2802. In
the case without anti-windup, one gets β = 0.9590
and V = 28.5379. The size of the region of stability
with the anti-windup scheme is enlarged of 72%.

5. CONCLUDING REMARKS

In this paper, LMI conditions have been proposed
to treat the anti-windup gain design for linear sys-
tems subject to both actuator and sensor satura-
tion. We have particularly focused on the problem
of enlargement of the basin of attraction of the
closed-loop system, whereas the controlled output
signal remains bounded. The anti-windup loops
use some measured varaibles (due to the actuator)
and some estimated one (due to the sensor) issued
from an observer step. The obtained conditions
are proposed via the use of a modified sector
condition and Finsler’s Lemma which allows to
cope with some drawback appearing when using
other modelling for the closed-loop system (like
classical sector condition or polytopic model).

Some discussion about the observer step and the
possibility to build additional anti-windup loops
(in particular dynamic anti-windup loops) will be
provided in a more complete version of the paper.
Moreover, in a future work the input-to-state
stabilization problem for linear systems subject
to L2-disturbances should be addressed.
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