
OPTIMISING NEURAL NETWORK ARCHITECTURES FOR COMPENSATOR DESIGN 

John H Goodband*, Olivier C Haas*, John A Mills+

* Control Theory and Applications Centre, Coventry 
University, Priory Street, Coventry, U.K.

Tel. +44 24 76 888972, Fax: +44 24 76 888052,
 e-mail: ctac@coventry.ac.uk

+ Radiotherapy Physics, Walsgrave Hospital, 
Clifford Bridge Road, Coventry, UK

Tel. +44 1203 602020 Ext. 7087,
 e-mail: jam@walsgrve.demon.co.uk

Abstract: This paper reports on investigations into optimising neural network (NN) 
design for predicting complex 3-dimensional compensator profiles for intensity 
modulated radiation therapy (IMRT) treatment. The first part of the paper describes the 
model used to represent compensator dimensions. The second part describes the methods 
used to obtain the optimal NN architecture. Results show that all three methods produce 
NNs capable of zero validation error using a nearest integer error criterion. The degree of 
accuracy obtained is within clinically accepted bounds and NNs offer a faster means for 
calculating compensator dimensions than existing algorithms. Copyright © 2005 IFAC
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1. INTRODUCTION

The aim of intensity modulated radiation therapy 
(IMRT) is to deliver a prescribed high dose of 
radiation to a tumour whilst simultaneously 
minimising the dose to healthy tissue surrounding 
the tumour. The use of compensating materials in 
IMRT is well documented (Haas, 2003; Meyer, 
2002; Webb, 2001). Compared with more complex 
designs such as multi-leaf collimators (MLCs), 3-D 
compensators are cheap, robust, and quality 
assessments are easily made (Webb, 2001; Bakai, 
2001). Webb comments that the high cost of MLCs 
(both in terms of hardware and staff training) will 
preclude the use of IMRT in many centres unless 
simpler, cheaper methods are utilised (Webb, 2002).

A major problem associated with designing patient 
specific compensators is that of relating a desired 
dose distribution (in the form of a matrix of 
intensities, usually converted into monitor units) to 
the physical dimensions required to produce this 
distribution. Forward prediction models (i.e. those 
calculating the fluence distribution attributable to a 
particular attenuator profile) are available which 
provide a high degree of accuracy, especially those 
using Monte-Carlo techniques (Rogers et al, 1995).  
According to (Harmon et al, 1998) the inverse 
problem of predicting the correct profile given a 
matrix of intensities desired for a treatment plan is 
less tractable, since there are a large (theoretically 
infinite) number of profiles which would produce 
similar intensity maps. Several methods have been 
postulated. The general problem is that of speed 
versus accuracy. Rapid inverse calculation methods 



rely on simplifications which introduce inaccuracies 
in the attenuator dimensions. More accurate 
algorithms are computationally much slower. A 
comparison between a deconvolution algorithm and 
a systems identification approach using least squares 
is made in (Meyer, 2001) demonstrating the long 
computation times required for the former. Although 
the least-squares method presented in (Meyer, 2001) 
is very much faster, reservations are expressed in 
(Goodband et al, 2003) regarding its capability to 
generalise. For a full discussion of available 
methods, refer to (Webb, 2001). 

Some studies have investigated the use of neural 
networks (NNs) in radiation therapy treatment 
planning. The training time may sometimes be long, 
but, once trained, NNs carry out complex 
calculations in a fraction of the time taken by inverse 
algorithms. However, the correct design of NN is 
crucial if good generalisation (i.e. response to unseen 
data) is to be achieved. Some of the areas discussed 
have been classification (Leszcynski et al, 1999; 
Willoughby et al, 1996), beam-orientation (Knowles 
et al, 1998), planning target volume prediction 
(Kaspari et al, 1997) and the design of intensity-
modulated fields from portal image data (Gulliford et 
al, 2002). A novel approach using NNs to predict 
compensator dimensions was introduced in 
(Goodband et al, 2004a). Initial investigations 
showed that a NN can be trained to accurately 
predict simple 2-dimensional (2-D) compensator 
profiles using data calculated with an algorithm. In 
general, the standard backpropagation (BP) 
algorithm with momentum is used for training multi-
layer perceptrons (MLPs). There are other, more 
efficient algorithms available which work well with 
NNs of moderate size. The work presented in this 
paper extends the concept presented in (Goodband et 
al, 2004b) to more complex 3-dimensional (3-D) 
profiles. By optimising the architecture for a MLP 
using the Levenberg-Marquart training algorithm 
and early stopping, the resultant thresholded error is 
zero. The accuracy of the NN is therefore dependent 
only on that of the algorithm used to produce 
training data. Compared with existing methods using 
sequential calculations, NNs are at least one order 
faster in computational time. 

2. MODELLING

2.1 Modelling X-ray Attenuation

In order to train the NNs introduced in section 3 it is 
necessary to provide training data. Good training 
practice is to make the number of data pairs greater 
than the number of parameters being optimised 
(Hagan, 1996). For the present NN architectures, it 

would be impractical to attempt this by experimental 
means, due to the high cost involved both in terms of 
time and resources. X-ray fluence profiles are 
therefore calculated using an algorithm. A similar 
method is used in (Gulliford et al, 2002). A major 
advantage in using algorithmically generated data is 
that it is noise free. The algorithm produces a 
maximum dose error of 4.55%. Details of the 
algorithm used can be found in (Goodband et al, 
2004a). It will be noted that more complex 
algorithms could be used to reduce this error, but 
without loss of generality, the present method is used 
to demonstrate the principle. The present study is 
based on the use of mercury as the attenuator, as part 
of a wider investigation into the use of liquid-metals 
as compensators, but the same concept can be 
extended to any material acceptable for radiation 
therapy purposes.

2.2 Modelling the Compensator Profile

Elements of compensating material are modelled as 
discrete, identical units (Figure 1). Each element 
represents 6.7mm length and 1mm height of the 
compensator. A 3-D profile is built up using a series 
of parallel 2-D ‘slices’, 6.7mm apart. For treatment 
purposes, the compensator is mounted on a linear 
accelerator (linac) tray at a distance of 67cm from 
the beam source and 33cm from the isocentre of the 
prescribed treatment volume i.e. the centre of the 
tumour (Figure 2). 
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Figure 1.A schematic 2-D vector representation of 
compensator dimensions. 

Figure 2. Geometry of attenuation set-up (shown in cross-
section: not to scale).



6.7mm at the base of the compensator projects to 
10mm length at the treatment isocentre, which is a 
clinically acceptable resolution. Each vector 
representing a slice of the compensator contains 12 
elements, the total length representing 80.4mm width 
on the linac tray. In the present study each increment 
is equivalent to 1mm depth of mercury. 25mm of 
mercury attenuates 80.4% of the dose from a 6MeV 
X-ray beam. Each element of the compensator vector 
has an integer range [0, 25], representing 25 depth 
increments and a resolution of 1mm. 10 depth levels 
are used for validation purposes in (Webb, 2002). 
Although these dimensions are associated with a 
device designed to fit between the linac head and 
tray (Goodband et al, 2004a), the method can be 
extended to any dimensions required by altering the 
size and/or number of the depth increments. The 
corresponding dose distribution vectors similarly 
have 12 elements, representing a total width of 
120mm at the dose isocentre. Each dose vector 
element has a continuous range (0, 1], 1 representing 
a 100% dose from a beam i.e. no attenuating material 
present. Zero dose is theoretically unattainable as it 
would be attributable to an infinite depth of 
attenuating material. The penumbra effect caused by 
beam divergence (Hendee and Ibbott, 1996) is not 
modelled since the compensator dimensions are 
small enough for it to be ignored. 

3.  NEURAL NETWORK DESIGN

3.1 Network Architecture

The optimal architecture for a NN designed to 
reproduce a functional mapping may not be 
immediately obvious. The selection criterion of 
‘Occam’s razor’ (Haykin, 1999) is implemented in 
order to ensure that the NN architecture is not too 
large for the problem it is designed to solve. This 
states that the simplest network should be used to 
solve the input-output relationship. Implicitly this 
makes the function as smooth as possible. The 
relationship between attenuator depth and dose 
distribution is non-linear, but monotonically 
decreasing i.e. the deeper the attenuating material, 
the lower the dose delivered. A MLP with one 
hidden layer is capable of describing any functional 
mapping of this type (Hertz, 1991) and is therefore 
used throughout. The most commonly used non-
linear activation functions for MLPs are the logsig 
function
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and tansig or hyperbolic tangent function
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where y is the output produced by an input of u
applied to a neuron. Since no correlation exists 
between training vector elements, the number of 
input and output neurons is dictated by the size of 
the training vectors. However, the number and type 
of hidden neurons required cannot be ascertained a 
priori (Ozturk, 2001), but instead is optimised during 
the network training.

3.2 Training Algorithm

Although very popular for training feed-forward 
networks, the BP algorithm (Rumelhart and 
McClelland, 1986) has been criticised for its slow 
convergence (Masters, 1993). BP was used in 
(Goodband et al, 2004b) and although reasonable 
results were obtained, the time taken to train even 
relatively small networks was found to be very long. 
The training algorithm used for the present study is 
the Levenberg-Marquart. This is recognised as a fast 
method for training small to medium sized NNs, and 
is a modification of the Gauss-Newton method. It 
uses the following weight update:
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where nw is the nth weight update, J is the 
Jacobian matrix containing first derivatives of 
network errors with respect to weights and biases, 
is an adjustable scalar parameter, t is a target vector 
and y the network output.   is decreased with a 
reduction in the energy function 
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and increased otherwise. This allows the algorithm 
to take advantage of the speed of the Gauss-Newton 
approximation to a second-order method near an 
error minimum. The decrease factor for the present 
study is 0.1 and the increase factor 10. A 
disadvantage of the method is the amount of memory 
required in computing J at each iteration, which 
restricts its use to networks with no more than a few 
thousand free parameters. For the present study, this 
requires a NN to be trained using 2-D slices of the 3-
D data. Because of the obvious spatial relationship 
between compensator dimensions and dose 
distribution, this is a reasonable simplification, 
although it does ignore the effect of particle 
scattering (Hendee and Ibbott, 1996) in a direction 
orthogonal to the slices.

3.3  Network Training Data

A set of training data is produced covering a range of 
possible compensator profiles ranging from flat to 
graded and asymmetric. In all, 1435 different slices 
are generated. The fluence distribution attributable to 
each profile is calculated using the algorithm 
described in (Goodband et al, 2004a). Each pair of 



fluence and dimension vectors is used respectively as 
the target and input vector for training the NN. Each 
set of fluence vectors is normalised with zero mean 
and values in the range  [-1, 1]. This accelerates 
training by preventing weight oscillation. Two sets 
of dimension vectors are used, one rescaled to lie in 
the range [0.25, 0.75] by adding 12.5 to each element 
then dividing by 50, the second set rescaled to [-
0.25, 0.25] by subtracting 12.5 and dividing by 50. 
This allows either logsig, or tansig neurons, 
respectively, to be utilised on the output layer, 
thereby avoiding the requirement for an additional 
linear layer and the associated increase in training 
time (Haykin, 1999; Goodband et al, 2004b). 
  
3.4 Generalisation

Care must be taken to ensure that good 
generalisation is built into a NN, so that when 
presented with a previously unseen input it will 
produce an appropriate output. A NN trained to a 
very small error may have effectively ‘memorised’ 
training data without learning the input-output 
relationship. Early stopping is therefore implemented 
using validation data not used during the network 
training. All training is carried out using 75% of a 
random sample of the total data whilst the remaining 
25% is used only for validation purposes. If the 
validation mean-squared error (MSE) increases for 
more than 5 consecutive epochs, training ceases. 

3.5 Optimisation

Initially, a small number of architectures are trained 
to assess the relative merits of using logsig or tansig 
activation functions using 100 data pairs. In all cases 
tansig hidden neurons with logsig output neurons 
return the lowest MSE. Thereafter, all architectures 
use this combination.

Although genetic algorithms (GAs) have been 
successfully implemented for optimising NN 
architectures (Reeves and Steele, 1991; Wu et al, 
2001; Ozturk, 2003), it is known that GAs cannot be 
guaranteed to converge to the global minimum of an 
energy function. They can also be slow, since an 
unrepresentative training result may cause the 
genetic search to move in an inappropriate direction. 
The present study examines a deterministic approach 
based on increasing the size of data sets and growing 
the NN architecture incrementally. Training is 
carried out for a sequence of NN architectures 
commencing with 1 hidden neuron and 100 data 
pairs chosen at random from the total set. The 
optimal number of training pairs depends on the size 
of NN architecture and the nature of the functional 
relationship and cannot be established with certainty 
before training commences. NN theory gives 
generalised worst-case lower bounds for data size, 

but these predictions are often impractical to 
implement (Haykin, 1999). 20 training runs are made 
for each data set with re-initialisation of random 
weights for each run. This is consistent with usual 
ensemble-averaging in NNs (Haykin, 1999) allowing 
training to commence from different points in the 
weight space, thereby increasing the chance of at 
least one of the training runs converging to the 
global minimum. The number of data pairs is 
increased incrementally in 100s to 1400 with 20 
training runs being carried out for each data set. 
Three different methods for optimising the NN 
architecture are compared. In each case, after the 20 
training runs are executed for all sizes of data set, for 
each architecture:
1) The minimum MSE is found.
2) The smallest mean for each set of training runs 

is found.
3) The smallest mean of each set of training runs 

excluding the worst single mse from each set is 
found. This eliminates some of the variance 
introduced through poor results obtained by 
training routines which gets trapped in local 
minima.

A discussion of these different techniques can be 
found in (Fahlman, 1989). In each case, if there is an 
improvement on the previous architecture an 
additional neuron is added and the process is 
repeated. This is continued until 2 consecutive 
architectures show no improvement on the previous 
one, then the training is stopped. This is an arbitrary 
choice, based on the training time available. Any 
output vector from an optimally trained network is 
first rescaled by multiplying by 50 and adding 12.5.  
Each element is then rounded to its nearest integer 
(NI) value, corresponding to the resolution used 
during training. The final error performance is based 
on the rescaled and NI output. Although a smaller 
NN architecture could be achieved by using the NI 
output as an error measurement during training, in 
the interests of empirical risk minimisation (Haykin, 
1999) this method was not adopted.

Training and validation is carried out using the 
Matlab®6.5 Neural Network toolbox on a Pentium 4 
2.0MHz processor and 261 MB RAM.

4. RESULTS AND DISCUSSION

A plot of MSE vs number of hidden neurons for the
various architectures is shown in Figure 3  and a plot 
of data set size vs number of hidden neurons in 
Figure 4. Method 1 gives an optimal architecture 
with 17 hidden neurons, achieving a minimum 

validation MSE of 7.901 710 %44.4  after 
rescaling  and  zero NI error, using  1200  data  pairs, 
9 run stops at 19 hidden neurons for this method. 



Figure 3. Plot of validation MSE vs number of hidden 
neurons in NN architecture for methods 1, 2 and 3. 

Figure 4. Plot of data set size vs number of hidden neurons 
for methods 1, 2 and 3. 

Method 2 gives  a  best  average of 1.458 610 using 
900 for training with 300 for validation. The training 
19 hidden neurons and 1050/350 data pairs. This 

includes a best minimum of 9.263 710 %81.4
MSE after rescaling and zero NI error. Training 
terminates at 21 hidden neurons. Method 3 predicts 
an optimal architecture of 20 hidden neurons with an 

average MSE of 1.204 610  using 825/275 data 

pairs and best minimum of 8.935 710 %73.4
MSE after rescaling and zero NI error. Training 
terminates at 22 hidden neurons.

From Figure 3 it can be seen that method 3 produces 
the smoothest curve of the 3 methods. Eliminating 
worst results gives a more representative view of the 
capabilities of an architecture and reduces variance. 
It is felt that although this produces the longest 
training time, it is likely to give the optimal NN 
architecture in general. However, since all 3 methods 
allow an NN to be trained to zero error using the NI 
error criterion, the minimum MSE method is clearly 
the most efficient, and allows a smaller NN 
architecture to be implemented. Training for a NN 

with 17 hidden neurons to zero NI validation error 
takes ~15 minutes and is obtained on average in 20% 
of training runs. 

Figure 4 shows the size of data sets producing the 
best results using each method. Interestingly, 
methods 1 and 3 produce the best 7 hidden neuron 
result using only 100 data pairs i.e. 75 for training, 
25 for validation. The number of free parameters for 
an architecture of this size is 

187127127712  . Accepted NN 
theory states that the number of data pairs used in 
training should exceed the number of free parameters 
to give reasonable results. For 8 hidden neurons = 
212 free parameters, best results are obtained by data 
sets > 1000 in size, which is what would normally be 
expected. The results show that it may be possible to 
use small experimentally obtained data sets to 
produce reasonable, although not optimal, training 
results.

5. CONCLUSIONS AND FURTHER WORK

The paper has presented on-going work in the design 
of a NN to predict compensator profiles for IMRT. 
Three different methods for optimising NN 
architectures have been compared. A general 
recommendation for the third method, which 
excludes maximum training MSE values has been 
made, while acknowledging that the method using 
only best MSE results from training runs is suitable 
for this specific problem. A NN representing 

1441212  cm2 pixels at the prescribed target 
volume mapping into a 25 depth increment 3-D 
compensator can therefore be constructed using 144 
input neurons, 2041217  hidden neurons and 144 
output neurons. 

It has been shown that by training a NN in sections, 
a more efficient training algorithm can be utilised 
which allows convergence to a very small mean-
squared validation error and zero error after rounding 
rescaled outputs to nearest integer values. Any error 
in predicting compensator dimensions is therefore 
attributable only to the forward algorithm used for 
calculating fluence distributions. The algorithm used 
produces a maximum error of 4.55%, which is 
considered clinically acceptable. Compared with 
existing sequential methods for calculating 
compensator dimensions, NNs are at least one order 
of magnitude faster. 

Further work will include integrating a trained NN 
into a beam-optimisation routine using combinations 
of compensator designs and investigating beam-
divergence to predict penumbra effects for larger 
compensator dimensions. The use of a more accurate 



dose distribution calculation, perhaps using Monte-
Carlo generated data, will also be assessed.
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