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Abstract: DNA micro-arrays provide thousands of genomic expressions on the same 
subject. A main issue is then to find the subset of genes whose degeneration is responsible 
of a certain type of cancer.  In this paper, starting from a paradigmatic classification 
problem of two kinds of Leukaemia, we discuss the use of data-mining techniques in such 
a context. Particular attention is devoted not only to the classification methods but also to 
all the data analysis steps including data pre-processing and information retrieval. 
Copyright © 2005 IFAC 
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1. INTRODUCTION  

 
Micro-arrays technology has marked a substantial 
improvement in making available a huge amount of 
data about gene expression (i.e. gene activation 
level) of subjects in different patho-physiological 
conditions. The question is then how to extract useful 
clinical information from such databases. In this 
context, two fundamental issues arise: 
1. Is it possible to retrieve the (possibly unknown) 

patient casuistry from the genomic data? 
2. Which are the genes responsible of the patient 

diversification? 
Point 1 is related to automatic classification of data 
in homogenous groups. In this connection, a basic 
tool is provided by clustering procedures, which are 
the subject of many papers and books (see (Hand et 
al, 2001) for a recent volume on this topics). As is 
well known, one can distinguish supervised 
procedures and unsupervised procedures. The former 
makes use of a-priori additional information on the 
data, such as the patient casuistry available as a result 
of medical examinations. Such information along 
with the patient gene expression levels are used to 

train a classifier which should be able to distinguish 
among different pathologies on the basis of the gene 
expressions of a subject. The obtained classifier can 
be then used e.g. for  the disease diagnosis of new 
subjects. 
In contrast to the supervised approach, unsupervised 
clustering performs the classification on the sole 
basis of the intrinsic characteristics of the data (gene 
expressions) by means of a suitable notion of 
distance. In this case no a-priori information on the 
patient casuistry is available and the latter should be 
reconstructed from the data. In this perspective, 
unsupervised clustering is the tool deputed to 
discovery new pathologies or new forms of already 
known diseases. 
Apart from diagnostic and disease discovering, both 
supervised and unsupervised clustering play a 
fundamental role in understanding the causes of 
cellular malfunctioning and tumour diseases. As a 
matter of fact, it is common opinion that tumours are 
caused by the deregulation of some genes, i.e. such 
genes are over or under activated so as to produce an 
abnormal quantity of proteins. Needless to say, 
understanding in detail such deregulation mechanism 



 

     

would be a most valuable help for the development 
of therapies for tumour diseases 
In this context, a basic issue is to understand which 
genes are responsible of a given pathology (point 2 
above), and plainly a classification of patients based 
on their genomic data is of paramount importance for 
determining which are such deregulated genes. 
Perhaps, it should also be said that clustering 
algorithms do not provide in general this kind of 
information directly. Indeed, clusters involve 
thousands of genes. Therefore, suitable information 
retrieval methods have to be used so as to spot which 
are the (hopefully few) genes responsible of the 
tumour disease. 
 
In this paper, we consider a set of DNA micro-arrays 
data – first treated in (Golub et al 1999) and available 
on Internet – regarding patients suffering from two 
kinds of Leukaemia. Our objective is to show by 
means of a paradigmatic example how the two points 
above can be addressed through a complete data-
mining approach.  
The methodology we adopt herein is based on four 
steps, the third of which, devoted to clustering, is the 
core of the approach. The first two, instead, 
constitute a pre-processing of data. Finally, the 
retrieval of the information on the most relevant 
genes for the patient classification is the objective of 
the fourth step. 
More in detail, the data mining procedure can be 
outlined as follows: 
 

1. A first pruning of genes not likely to be 
significant for the final classification is performed 
on the basis on their small inter-subject variance, 
thus reducing the dimensionality of the problem 

2. A principal component analysis defines a 
hierarchy in the remaining transformed orthogonal 
variables so as to point out the variables most 
representative for clustering. 

3. The unsupervised point of view is applied so as to 
achieve the classification without using a priori 
information on the patient’s pathology. This 
approach presents the advantage that it 
automatically highlights the (possibly unknown) 
patient casuistry. Clustering is performed by 
merging the classical k-means approach  
((MacQueen 1967) and (Hand et al, 2001)) with 
the recently developed PDDP algorithm proposed 
in (Boley 1998). According to the analysis 
provided in (Savaresi & Boley 2004), cascading 
these two clustering algorithms results in a 
significant improvement of performances. 

4. By analyzing the obtained results, the number of 
genes for the detection of pathologies is further 
reduced, so that the classification is eventually 
based on a minimum number of genes. 

 

The leukaemia dataset is often used as a test-bed  in 
bioinformatics. For example, it was treated in (Golub 
et al 1999) by resorting to a supervised approach and 
in  (De Moor et al 2003) by the k-means technique. 
Our approach seems to present significant 
advantages in that the classification is eventually 
based  on a very limited number of genes, and no a 
priori information is required. 

1.1 Structure of the paper 
 

The leukaemia data set is described in Section 2, 
while the preliminary data analysis (variance analysis 
and principal component analysis) is given in Section 
3. Then, Section 4 addresses the fundamental pro-
blem of data clustering, while Section 5 is devoted to 
the final “gene shrinking” step. A discussion on the 
obtained results is the subject of Section 6. 
 
2. THE DATA SET DESCRIPTION 
 
Data are taken from a public repository which has 
been often adopted as a reference benchmark (Golub 
et al 1999) in order to test new classification 
techniques and compare the various methodologies 
each other. 
The data-base is constituted by gene expression data 
over 72 subjects suffering from Leukaemia, relying 
on 7129 genes. A small portion of such data-set is 
depicted in Table 1. 
 

 
 

Here, data points are collected by rows and 
correspond to patients (also called subjects). 
Columns, instead, denote human genes and are the 
descriptive variables. Each patient is determined by a 
sequence of 7129 real numbers each measuring the 
activation level (technically speaking, the expression) 
of the corresponding gene. If such a value is 
negative, then the gene is poorly activated with 
respect to a standard reference (the smaller the 
expression the less the gene is activated) and we will 
say that the gene is under-expressed. Similarly, when 
such value is positive, the gene is said to be over-
expressed. 
Note that data are quantitative and the data points can 
be represented as 72 vectors in a 7129-dimensions 
Euclidean space. A simple measure of the genomic 
difference between two subjects can be obtained by 
resorting to the Euclidean distance in such space. 
In order to ease algebraic manipulations of data, the 
data-set can be also represented by means of a real 
matrix 0S  of dimension 72x7129, the entry 0

ijs  of 
which measures the expression of the jth gene for the 
ith  patient. 
 
For the Leukaemia data-set, an a-priori classification 
of patients is also available, as a result of medical 
examinations. Precisely, it is known that  47 of the 72 
subjects are cases of Acute Lymphoblastic 
Leukaemia (ALL), while the remaining 25 are cases 
of Acute Myeloid Leukaemia (AML). Such labels 
attached over subjects could be used for supervised 

Table 1: the Leukemia data-set 

 BioB 
5_at 

BioB 
5_st 

CreX 
5_st 

DapX 
M_at … 

Patient 1 -214 206 -118 311 … 
Patient 2 -139 74 -141 134 … 
Patient 3 -76 -215 84 378 … 
Patient 4 -135 31 107 268 … 
Patient 5 -106 252 1 118 … 
Patient 6 -138 193 -1 154 … 

… … … … … … 



 

     

classification. Herein, however, the data analysis has 
been carried out as if such a-priori information were 
not available. Indeed, as said in the introduction, our 
aim was to develop an unsupervised procedure for 
knowledge discovering problems. 
A-priori information has been considered solely at 
the end of the entire data-mining process in order to 
test the performance of the procedure. 
 
3. PRELIMINARY DATA-PREPROCESSING 
 
A typical bottleneck in DNA micro-arrays 
experiments, making the classification problem even 
harder, is the difficulty to collect a high number of 
homogeneous subjects: not only a big matrix is 
involved, but such matrix has a huge number of 
variables (7129 genes) with a very small number of 
samples (72 subjects). Needless to say, finding the 
most significant coordinates among these 7129 
variables is of paramount importance to model the 
data distribution and, consequently, to perform 
clustering (see also next Section 4). 
In this work, the search of the most significant 
coordinates is performed in two steps: 
-  A preliminary variable (gene) pruning is first 

performed in order to eliminate those variables 
which are per-se of little significance. 

-  The most significant variable combinations are 
determined by resorting to the well known 
Principal Component Analysis (PCA). 

These two points are now discussed in order. 
 
3.1. Preliminary pruning 
 
The first reduction of the problem dimensionality is 
obtained through an univariate analysis. Precisely, 
the variance of the expression values is computed for 
each gene across the patients, in order to have a first 
indicator of the relative inter-subject expression 
variability. Then, the genes whose variability is 
below a defined threshold are rejected leading to a 
first pruning. The simple idea behind is that if the 
variability of a gene expression over the subjects is 
small, then that gene is similarly expressed for each 
patient and hence is not useful for classification 
purposes. 
The result of the variance analysis for the 7129 genes 
in the Leukaemia data-set is depicted in Fig. 1. 
 

 
Fig. 1. inter-subject variance 

 

As can be seen, the variance is small for thousands of 
genes. Having selected a suitable threshold, 6951 
genes were  pruned. So, attention has been focused 

on 178 genes only. In the sequel the remaining 
72x178 data matrix will be denoted by S . 

 

Plainly, the only delicate point in the above outlined 
procedure regards the choice of the cut-off level, 
which is in fact a tuning parameter of the method. To 
this end, note that the adopted level may be possibly 
decided on the basis of biological considerations (e.g. 
it is known that the natural variability of gene 
expressions between homogenous subjects is no 
greater than a certain level), technological knowledge 
(taking into account DNA micro-arrays measurement 
confidence) or simply following empirical 
considerations (e.g. imposing either a maximum of 
residual variables or a maximum fraction of variance 
to be discarded). 
 
3.2. Principal component analysis 
 
Principal Component Analysis ((O'Connel 1974), 
(Hand et al, 2001)) is a well known multivariate 
analysis by means of which it is possible to bring into 
evidence the linear combinations of variables with 
higher inter-subject variance, namely those combina-
tions which are most useful for classification. More 
precisely, PCA returns a new set of orthogonal 
coordinates for the 178 dimensional data space 
resulting from the previous gene-pruning step. The 
new coordinates are ordered in such a way that the 
first one, the so called first principal component, 
denotes the direction with the greatest inter-subject 
variance, the second one (the second principal 
component) has the greatest inter-subject variance 
among all the directions orthogonal to the first 
component, and so on. 
The computation of the principal components of S  is 
made easy by the fact that, if the columns of S  have 
zero mean, the first principal component is the 
eigenvector associated with the largest eigenvalue of 
the covariance matrix SST . Furthermore, the second 
principal component is the eigenvector 
corresponding to the second largest eigenvalue of 

SST , and so on (see e.g. (Hand et al, 2001) for a 
simple proof). 
 
Remark 1: The requirement that the columns of  S  
have zero mean  can be fulfilled considering in place 
of S  the unbiased matrix weS ⋅− , where 

Te ]1,,1,1[ K= and w , the so called centroid of S ,  is a 
vector ],,,[ 21 pwww K  where 

∑
=

=
N

i
ikk s

N
w

1

1 , pk ,,2,1 K=  

( ],,,[ 21 ipii sss K is ith  row of S , Ni ,,2,1 K= ). 
 
Remark 2: Interestingly enough, if data are 
projected onto the ith principal component, the 
variance of projected data is given by the ith largest 
eigenvalue, say iλ , of SST . Correspondingly, if data 
are projected onto the subspace generated by the 
first k principal components, the variance of the 
projected data is ∑ =

k
i i1λ . The squared error in terms 



 

     

of approximating the true data matrix using only the 
first k principal components is ∑∑ =+=

178
1

178
1 / i iki i λλ . 

 
Since the eigenvalues of SST  are the (square of the) 
singular values of S , PCA can be performed through 
the singular value decomposition (SVD) of S . That 
is, write VUS Σ= , where Σ  is a diagonal 17872 ×  
matrix whose non null elements are the singular 
values of S , and U  and V  are orthonormal unitary 
square matrices of dimension 7272×  and 178178× , 
respectively; V  is also the matrix of eigenvectors of 

SST . As it is well known, there are many efficient 
algorithms for computing the SVD (see e.g. Golub 
and Van Loan (1996)). 
 
Remark 3: In principle, PCA could be applied to 
matrix 0S  directly, without any preliminary variable 
pruning. This, however, is not a wise procedure in 
general because of the computational over-effort 
required by the high number of initial variables 
(7129 in our problem). The cut-off on low inter-
subject gene variance is most useful in order to limit 
the computational burden. 
 
4. CLUSTERING 
 
As far as clustering is concerned, we resort to a 
bisecting divisive partitioning algorithm. In brief (see 
e.g. (Jain et al (1999)) and (MacQueen (1967)) for a 
more detailed discussion), these algorithms are first 
used to split the entire data-set in two clusters so as 
to maximize the intra-similarity and to minimize the 
inter-similarity of the partition. Then, the same 
bisecting procedure is iteratively applied, each time 
dividing a single cluster among those obtained in the 
previous step. 
The decision on which cluster has to be split at each 
iteration as well as on when halting the iterations has 
been guided by the criterion suggested in (Savaresi et 
al (2002)). This criterion is based on the computation 
of a certain performance index for a given data 
matrix (which can be both the initial data set or one 
of the clusters during the iterations). This index is an 
indication of the “separation degree” of the two 
clusters which would be obtained after performing 
the data matrix bisection. Through an intensive 
computation of this index, the most convenient 
splitting at a given iteration can be determined as the 
one maximizing the performance of the bisection. A 
performance improvement lower than a given level is 
taken also as a stopping rule for the algorithm. 
According to the analysis developed in (Savaresi and 
Boley (2001) and (Savaresi and Boley (2004)) the 
cluster bisection at each iteration has been performed 
by means of the cascade of the Principal Direction 
Divisive Partitioning (PDDP) algorithm and the 
bisecting K-means algorithm. For the sake of self-
consistency of this paper, these two algorithms are 
briefly outlined in Tables 5 and 6. In both cases, the 
input is a pN ×  matrix X  where data samples are 
the rows of the matrix, and outputs are two matrices 

LX  and RX .  

 

 
 

 
 

PDDP is a recently proposed technique (Boley 
(1998)) which is representative of non-iterative 
techniques. The idea behind PDDP is that data are 
typically aggregated in two clusters along a  principal 
direction, separated by the centroid. Therefore, the 
partition of the two clusters can be achieved by 
means of a cut orthogonal to the considered principal 
component and passing through the centroid of the 
data set. It is worth noting that, normally, the 
bisection is performed by considering the first 
principal component. However, this has to be 
considered in the light of available data, and possibly 
one can skip the first principal component and start 
with the second one. As an example, consider the 
data set represented in Fig. 2. As can be seen, the 
data give rise to two parallel clouds and clustering 
them orthogonally to the first principal component 
would be nonsense. Rather, one should take the 
second component. Note that this is exactly what 
happens in the Leukaemia data, as we will see later. 
K-means was first introduced in (MacQueen (1967)), 
and, probably, it is the best known and most widely 
used clustering technique. Hence, it is the best 
representative of the class of iterative centroid-based 
divisive algorithms. The idea behind is as follows. If 
the centroids Lc  and Rc  of the two clusters to be find 
were known, the data could be partitioned grouping 
the points close to Lc  in one cluster and those close 
to Rc  in an another one. Since Lc  and Rc  are not 
known in general, the procedure is initially 
performed with two randomly chosen points, and 

Table 3: Bisecting K-means algorithm. 
 
Step 1. (Initialization). Select two points in the 

data domain space, say p
RL cc ℜ∈, . 

Step 2. Divide T
NxxxX ],,,[ 21 K=  into two sub-

clusters LX  and RX , according to the 
following rule: 

 
⎪⎩

⎪
⎨
⎧

−>−∈

−≤−∈

RiLiRi

RiLiLi

cxcxXx

cxcxXx

  if  

  if  
 

Step 3. Compute the centroids of LX  and RX , 

Lw  and Rw . 
Step 4. If LL cw =  and RR cw = , stop.  
 Otherwise, let LL wc ← , RR wc ←  and go 

to Step 2.  

Table 2: PDDP clustering algorithm 
 

Compute the centroid w of X  and compute the 
unbiased matrix ewXX −=

~ , Te ]1,,1,1[ K= . 
Compute v,  the first principal component of  X~ . 
Divide T

NxxxX ],,,[ 21 K=  into two subclusters LX  
and RX , according to the following rule: 

⎪⎩

⎪
⎨
⎧

>−∈

≤−∈

0)(  if  

0)(  if  

wxvXx

wxvXx

i
T

Ri
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T

Li  



 

     

then the result is refined through iterations using the 
centroids of the clusters obtained at the previous 
iteration as Lc  and Rc . 
 

 
(a) cut orthogonal to the first principal component. Data 

aggregations are misclassified. 
 

 
(a) cut orthogonal to the second principal component. Data are 

correctly clustered. 
 

Fig. 2. A data configuration where bisection should be 
performed  orthogonally to the second principal component.  

 

The main flaw of K-means is its initialization since 
different starting centroids may lead to different 
results in general. PDDP is instead a one-shot 
algorithm, which provides a unique solution. Yet, its 
drawback is that the assumption on data separability 
along one of the principal components may not be 
fulfilled for some data configurations. 
It has been proven ((Savaresi and Boley (2001), 
(Savaresi et al (2002)) and (Savaresi and Boley 
(2004))) that the best performance (in terms of 
quality of partition and of computational effort) can 
be obtained by applying PDDP, followed by K-
means initialized with the centroids of the clusters 
obtained as a result of PDDP. In such a way, the 
initialization problem of K-means is avoided, and the 
final bisection takes advantage of the positive 
features of both methods. 
The proposed approach is very general, and is not 
limited to the bio-informatics field. For instance it 
was successfully used for analyzing the data 
regarding a large virtual community of Internet (see 
(Garatti et al 2004)). 
 
5. GENE SHRINKING 
 
Going through PDDP and K-means, it can be seen 
that the final data bisection is performed according to 
the following (linear) classification rule ( Lc  and Rc  
are the final centroids returned by the K-means 
algorithm): 

⎩
⎨
⎧

>⋅∈
≤⋅∈

KuxXx
KuxXx

Ri

Li

i

i

  if  
  if  ,            (1) 

where LRLR ccccu −−= /)(  and uccK LR ⋅+⋅= )(5,0 .      
The problem within this expression is that if the 
linear inequalities above are referred to the original 

coordinates (i.e. the genes), we obtain a classifier 
depending on all the 178 relevant genes, 
characterizing each patient. This in turn imply that 
the expression above is of minor interest from a 
biological perspective as it involves too many genes. 
For this reason, the classification procedure outlined 
in Section 4 has been complemented with a “gene 
shrinking” technique in order to detect which are the 
(hopefully few) genes actually relevant for the 
classification. 
The approach we propose is the following one. 
Suppose that vector u  above is written as 

],,,[ 17821 uuu K  where, without any loss of generality, 
these components are sorted by decreasing values of 

|| iu . In a sense, || iu  measures the importance of the 
ith variable for the classification. Then, we consider 

]0,,,[' 1771 uuu K=  in place of u  in (1) and search for a 
partitioning threshold 'K  ( KK ≠'  in general) such 
that the original data partition is preserved. If such 

'K  exist, a new classifier based on 177 genes only is 
obtained. This procedure can be iterated, eliminating 
one by one all the less relevant component of  u . The 
stopping rule is determined by a certain 

]0,,0,,,[' 11 KK −= luuu  for which no 'K  preserves the 
original data partition. This returns luu ,,1 K  as the 
genes actually relevant for the patient classification. 
  
6. RESULTS AND DISCUSSION 

 
By applying the above methodology to the 
Leukaemia database, the set of 72 subjects has been 
subdivided into two clusters represented in Fig. 3 
(only three principal components are shown here), 
containing 23 and 49 patients, respectively. It is 
worth noting that the data bisection is basically 
performed orthogonally to the second principal 
component, for the reasons explained in Section 4. 

 
Fig. 3. PDDP+K-means data partition (“x”=first cluster, 

“o”=second cluster) . 
 

Recall that our portioning has been obtained in a 
fully automatic and blind way, namely without 
exploiting a priori information on the pathology of 
the patients (ALL or AML). 
Interestingly enough, all the 23 subjects of the 
smaller cluster turn out to be affected by the AML 
pathology. Thus, the only error of our unsupervised 
procedure consists in the misclassification of two 
AML patients, erroneously grouped in the bigger 



 

     

cluster, together with the remaining 47 subjects 
affected by the ALL pathology. Thus the 
misclassification percentage is 2/72=3%. 
In addition, it should be pointed out that the final 
gene-shrinking step leads to a very small number of 
significant genes, precisely to the 7 genes listed in 
Table 4. 
Note that in (Golub et al (1999)) the attention is 
focused on a supervised approach. By splitting the 72 
patients in 38 training samples and 34 testing 
samples, a correct classification was obtained for 29 
(about 85%) of the 34 test subjects. Interestingly 
enough,  the intersection between the set of 
discriminating genes found in that paper and our set 
of 7 genes is non empty: Cystatin C, Azurocidin and 
Interleukin-8 precursor appear in both sets. A 
possible interpretation is that the three genes within 
the intersection of the two subset are probably really 
determinant, whereas the complementing 4 genes 
identified by the procedure proposed in the present 
paper better discriminate than the complementing 43 
in the  subset of Golub and coworkers. 
 

 
 

7. CONCLUSION 
 

In this paper, we have faced the problem of 
discriminating two kinds of Leukaemia on the basis 
of data-mining on micro-arrays genetic data. The 
unsupervised nature of the presented approach 
enables the classification without any knowledge on 
the pathologies of the patients. Also, it does not 
require the subdivision of the data into a training set 
and a testing set. The results of the data analysis 
show that the discrimination can be effectively 
performed by means of 7 genes only of the original 
7129 genes available on the micro-array. 
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Table 4:  The 7 genes able to discriminate 
between AML and ALL 
 
1. FTL Ferritin, light polypeptide M11147_at 
2. MPO Myeloperoxidase M19507_at 
3. CST3 Cystatin C (amyloid angiopaty and 

cerebral hemorrage) M27892_at 
4. Azurocidin gene M96326_ rna1_at  
5. Glutathione peroxidase 1 Y00433_at 
6. INTERLEUKIN-8 PRECURSOR Y00787_s_at 
7. VIM Vimentin Z19554_s_at 


