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Abstract:
A Monte Carlo-based approach to filtering for nonlinear systems based on the
Pathwise theory was proposed by M. H. A. Davis in 1981. The discrete-time
Markov chain used to compute the solution of a Fokker-Planck equation whose
coefficients were determined by the observed process was here replaced by the
simulation of an equivalent stochastic differential equation in order to make the
filter implementation more clear and with less computational cost. This paper
shows that the Pathwise filter for an one-dimensional Ornstein-Uhlenbeck state
process with saturation in the observation has an interesting characteristic of
divergence in this estimates when the signal-to-noise ratio on the state equation
is low. Rewriting the filtering solution in terms of observation-based weights, it is
presented that the low performance of the filter can be preliminary explained by
the sudden increase of the weight variances. To solve this problem, a resampling
scheme using the effective number of particles was used to smooth or, at least,
maintain the weight variance controlled. Copyright c©2005 IFAC
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1. INTRODUCTION

The basic continuous-time nonlinear filtering prob-
lem consists of estimating a time-homogeneous
Markov process X = {Xt; t ≥ 0} with known
law, given Y = {Yt; t ≥ 0} defined by

Yt =

t∫

0

h(Xs)ds + Vt, 0 ≤ t ≤ T. (1)
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The signal process, X, takes values in Rd and the
observation one, Y , in Rm, with d,m ≥ 1. The
process {Vt; t ≥ 0} is a standard m-dimensional
Brownian motion, h : Rd → Rm is a bounded
continuous function, and T is a fixed final time. It
is assumed that X0 is a random variable with law
ξ and Y0 = 0.

The classical filtering problem can be summarized
as finding the the conditional distribution of Xt

with respect to F t
0, that is,

πt(ϕ) =
∫

Rd

ϕ(x)πt(dx) = E[ϕ(Xt)|F t
0], (2)



where F t
0 is the filtration generated by Y up to

time t, and ϕ : Rd → Rm is a bounded continuous
function.

In accordance to Kallianpur and Striebel (1968),
the classical filtering problem can be rewritten as

πt(ϕ) =
Ê[ϕ(Xt) Λt|F t

0]
Ê[Λt|F t

0]
=

σt(ϕ)
σt(1)

, (3)

where Ê is the expectation with respect to the
measure defined by Λt, and σt(·), the unnor-
malized representation of πt(·), satisfies the Za-
kai (Zakai, 1969) and the Pathwise (Clark, 1978;
Davis, 1981b; Pardoux, 1981; Davis, 1981a) equa-
tions.

According to Davis (1981b) and Pardoux (1981),
the main result of the Pathwise theory of nonlin-
ear filtering shows that is possible to compute, for
each t, the conditional distribution (3) in terms
of the solution of a Fokker-Planck equation whose
coefficients depend on the observed sample path
{y(s), s ≥ 0}. Clark (1978) and Clark and Crisan
(2005) discussed the robustness of the Pathwise
filtering, or the continuity of the filter with respect
to the observation process.

Based on ideas of Kushner (1977) of approximat-
ing the trajectories of a parabolic partial differ-
ential equation by a discrete-time Markov chain,
Davis (1981a) thus proposed a Monte Carlo-based
technique to calculate (3) via a large number
of independent simulations or particles. For an
adequate choice of spatial grid spacing and num-
ber of independent simulations, (O’Loghlen and
Wright, 1982) and (Souza, 1992) affirmed that
the Pathwise filter estimates are comparable to
that obtained by the extended Kalman filter for a
stable one-dimensional Ornstein-Uhlenbeck signal
process with saturation in the observation.

However, the most efficient and widely applicable
approach to solving stochastic differential equa-
tions (SDEs) seems to be the simulation of sample
paths of time discrete approximations on digital
computers (Kloeden and Platen, 1999). As imple-
mented by Jacob et al. (2004), the idea was to
use the structure of the SDE in a natural way,
in contrast to the Kushner’s Markov chain ap-
proach where the state variables were discrete. An
advantage of considerable practical importance
of this approach is that the computational costs
such as time and memory required increase only
polynomially with the dimension of the problem.

The initial idea of this paper was to study imple-
mentation methods of the Pathwise filter and the
filter performance when resampling methods were
applied aiming to get a better rate of convergence.
However, preliminary tests using the scenario pre-
sented by (O’Loghlen and Wright, 1982) showed

that for unfavorable signal-to-noise ratio (SNR)
in the state noise, the nonlinear filter started di-
verging on its estimates. In this way, based on
the behavior of the main variables of the filter
dynamics, this paper aims to give initial explana-
tions about the divergence in the estimates. Based
on a defined coefficient, a possible solution for the
problem was proposed using a resampling scheme
into the simulated trajectories of the filter.

Next section shows the main equations of the
Pathwise theory. The numerical implementation
and a generalized algorithm of the filter are pro-
posed in Section 3. Section 4 contains the results
referring to the filter divergence and the effective-
ness of the proposed resampling-based solution.
Conclusions are in Section 5.

2. THE PATHWISE FILTER

Let (Ω,F ,Ft≥0, P ) be a filtered probability space
on which the signal X is described by the following
SDE

dXt = b(t,Xt) dt + g(t, Xt) dWt, (4)

where {Wt; t ≥ 0} is a standard d-dimensional
Brownian motion independent of V , and

dYt = h(Xt) dt + dVt (5)

is the differential form of equation (1) correspond-
ing to the noisy observation, where

||h|| = max
1≤i≤m

sup
x∈Rm

|hi(x)|. (6)

The functions b : R+xRd → Rd and g : R+xRd →
Rd2

are globally Lipschitz and X0 ∼ ξ is a d-
dimensional square integrable random vector, F0-
measurable and independent of W and V . These
hypotheses satisfy the sufficient conditions for
the existence and uniqueness of the solution of
equation (4) (Lipster and Shirayaev, 1977).

Based on the concepts of the Pathwise filter pre-
sented in (Clark, 1978; Pardoux, 1981; Davis,
1981b), Davis (1981a) used some ideas described
in (Kushner, 1977) to develop the robust Monte
Carlo-based nonlinear filter. By fixing a continu-
ous function {y(s), s ≥ 0}, or sample path of the
observed process Y , it can be shown that, given
F t

0 and any continuous bounded function ϕ, the
main result is

E[ϕ(Xt)|F t
0] =

∫

Rd

ϕ(x)py(t, x)dx, (7)

where



py(t, x) =
exp{y(t)h(x)}qy(t, x)∫

Rd exp{y(t)h(x′)}qy(t, x′)dx′
(8)

and qy(s, x) is the solution of the following
parabolic partial differential equation

−∂qy

∂s
+ (Ly

s)∗qy + cyqy = 0, s < t,

qy(0, x) = p0(x), s = 0, (9)

which is solved forward from the initial condition
p0(x) and with (·)∗ being the conjugated operator.
The parameters presented in (9) are given by

Ly
sϕ =

1
2

∑

i,j

aij
∂2ϕ

∂xi∂xj
+

∑

i

by
i (s, x)

∂ϕ

∂xi
(10)

which is the infinitesimal generator of a process
Zs whose solution is the next SDE

dZs = by(s, Zs) ds + g(s, Zs) dBs, (11)

where Bt is a standard vector Brownian-motion
process with the same dimension and independent
of V ,

cy(s, x) =
1
2
y2(s)

∑

i,j

aij(s, x)
∂h

∂xi

∂h

∂xj

−y(s)Lsh(x)− 1
2
h2(x), (12)

Lsϕ =
1
2

∑

i,j

aij
∂2ϕ

∂xi∂xj
+

∑

i

bi(s, x)
∂ϕ

∂xi
, (13)

which is the infinitesimal generator of the signal
process (4),

aij = aij(s, x) = g(s, x)g∗(s, x) (14)

and

by
i (s, x) = bi(s, x)− y(s)

∑

j

aij(s, x)
∂h

∂xj
. (15)

Therefore, the nonlinear filtering consists in com-
puting the conditional density (3) by solving
equation (9), which is an equation of almost
the same type as the Fokker-Planck equation
whose solution for the signal realization x is
the unnormalised conditional density given by
exp{y(t)h(x)}qy(t, x) in (8).

3. NUMERICAL IMPLEMENTATION

Consider the time partition

0 = T0 < T1 < · · · < T < · · · < TN = T (16)

with

Tj+1 = Tj + δ, j = 0, 1, ..., (N − 1), (17)

and time-increment given by δ = T
N .

3.1 Davis’ Monte Carlo Filter

The parabolic partial differential equation (9) is
the forward equation for a process (11) perturbed
by a Feynman-Kac formula transformation. To
have a clear understanding about the implemen-
tation of the filter, equation (7) can be rewritten
as

∫

Rd

ϕ̃i(T , x)qy(T , x)dx = E[K(T ) ϕ̃i(T , zT )],(18)

where

K(T ) = exp{
T∫

0

cy(r, zr)dr } (19)

is the modulation coefficient, and ϕ̃i, i = 1, 2, is
described as

ϕ̃1(T , z) = exp{y(T )h(z)} (20)

and

ϕ̃2(T , z) = exp{y(T )h(z)}ϕ(z), (21)

in accordance to (7) and (8).

The classical Monte Carlo method consists of
approximating the expectation in equation (18)
by an average of P realizations or particles.
Thus, generating P independent sample trajecto-
ries {zk

s , 0 ≤ s ≤ T }, k = 1, 2, ..., P , of the ZT
process of equation (11), the values

Kk(T ) = exp{
T∫

0

cy(r, zk
r )dr }, (22)

must be calculated and the approximated value of
the right-hand side of equation (18) is

1
P

P∑

k=1

Kk(T )ϕ̃i(zk
T ). (23)

Finally, combining (23) with (11) into functions
(20) and (21), an approximated estimate of πt(ϕ)
is given by

E[ϕ(xT )|FT0 ] '
P∑

k=1

µk(T )ϕ̃2(T , zk
T ), (24)

where



µk(T ) =
Kk(T )∑P

k=1 Kk(T )ϕ̃1(T , zk
T )

(25)

is the normalized weight.

As quoted by Davis (1981a), the influence of the
observed sample path here is twofold: first, the
value of y(T ) appears explicitly on equation (24),
and, secondly, the sample path {y(s), 0 ≤ s ≤ T }
determines the generator of zT via (15) and (12)
and hence affects the distributions of Kk(T ).

This approach is feasible in the sense that one
carries it out and get a return directly related
to the amount of computational effort invested.
However, the convergence could still be quite slow
due to bad initializations of ZT , as explained by
O’Loghlen and Wright (1982) and Souza (1992).

3.2 Davis’ Generalized Monte Carlo Filter

Based on ideas of Del Moral and Miclo (2000), a
resampling scheme of the particles must be im-
plemented in order to kill trajectories exploring
unfruitful directions of the process. This can be
interesting because, according to Le Gland (1984),
Kk has a sharp maximum given a certain realiza-
tion. Thus, just simulations next to the referred
realization contribute effectively for the estimate.

A good criterion used to apply the resampling in
a given time instant Tj is the effective sample size
(Doucet, 1998). It measures the degeneracy of the
particles and is defined as

Neff =
1∑P

k=1(µ
∆
k )2

, (26)

with the integration interval being redefined as

µ∆
k =

K∆
k∑P

k=1 K∆
k ϕ̃1(T , zk

T )
, (27)

where

K∆
k = exp{

T∫

t∆

cy(r, zk
r )dr } (28)

for t∆ being the time instant where the last
resampling occurred. This scheme is just applied
when Neff < Nthres, for a given Nthres.

3.2.1. Generalized Monte Carlo Filter Algorithm
Given an initial distribution ξ, the step-by-step al-
gorithm of the so-called Generalized Monte Carlo
Filter (GMCF) is described as the following:

At time T0,

Step 0: Initialization

• For k = 1, ..., P , sample zk
T0
∼ ξ;

• Set Nthres and t∆ = T0.
• Set j = 1.

While Tj 6= TN ,

Step 1: Evolution

• For k = 1, ..., P , evolve zk
Tj

in accordance to
the model described by (11).

Step 2: Importance weights evaluation

• For k = 1, ..., P , evaluate the importance
weights K∆

k , Kk, µ∆
k and µk.

Step 3: Algorithm degeneracy computation

• Compute Neff according to (26);
• If Neff < Nthres

· Set t∆ = Tj ;
· For k = 1, ..., P , replace the particles in

zk
Tj

according to µ∆
k .

Step 4: Conditional law computation

• Compute πTj (ϕ) according to (24);
• Set j = j + 1 and go to Step 1.

End

When the parameter Nthres is chosen in a form
that the resampling does not occur, the nonlinear
filter is called Monte Carlo filter (MCF).

4. EXPERIMENTAL RESULTS

Consider the system suggested by Davis (1981a)
and let the filtering problem be the following one-
dimensional Ornstein-Uhlenbeck process

dxt =−1.0 dt + α dwt (29)

whose one-dimensional observation process is

dyt = h(xt) dt + dvt (30)

with

h(x) =





sin(x) if |x| ≤ π/2
+1 if x > π/2
−1 if x < −π/2

, (31)

where wt and vt are independent one-dimensional
standard Brownian motions, and α > 0 is the
time-independent amplitude of the state noise.
The filtering was carried out for t ∈ [0, 5] by
using a time step of δ = 2−8s, and the integral
presented in (28) was approximated by the tra-
ditional Euler scheme. Given α, the signal pro-
cess (29) was simulated according to its analyti-
cal solution whereas the obsevation process (30)
used the Euler-Maruyama scheme (Kloeden and
Platen, 1999). The signal initialization was set to



x(0) ∼ N(0.0, 0.25) to demonstrate the perfor-
mance of the nonlinear filter over different SNR.

Preliminary experiments showed that MCF started
diverging when the SNR in the state process is
not favorable, that is, low. The time step δ was
decreased aiming to verify the influence of dis-
cretization errors over the estimates, however the
error magnitudes did not change. In this way, to
investigate empirically what is happening, impor-
tant information about the filter can be obtained
by checking the average and the variance of the
following coefficients: ε - the estimate square error,
K∆ - the unnormalised weight, and µ∆ - the nor-
malized weight. To provide robustness in the error
estimates, the analysis was made for 50 different
filter realizations in 50 different initializations.

Figure 1 presents the results of the coefficients for
the MCF with P = 50 for three different values of
state noise magnitude α: 0.10, 0.30, 0.50. For all
the coefficients, it can be seen that the variance for
α = 0.50 is the biggest one, what seems that the
filter has a limited point of stable operation with
respect to the amplitude of the noise state. Based
on these facts, the divergence effect seems to occur
when the variance of µ∆ starts increasing. Thus
the resampling scheme can be used to decrease
the referred variance and consequently makes the
estimates more stabilized.

A resampling scheme for Nthres = 0.98, 0.96 was
implemented for the amplitude state noise α =
0.50 and the results are presented in Figure 2 for a
longer time range of simulation. The action of the
resampling really makes the estimate of the filter
more stabilized and accurate due to the control of
the variance amplitude of the weights. Specifically,
though a great number of resampling controls the
variance amplitude as given by Nthres = 0.98,
the smoother mode of operation presented by
Nthres = 0.96 also had good results. That is,
apparently it is not necessary a great number of
resamplings to control the divergence. Thus the
choice of the effective number of particles is robust
and its value is not the only variable to be checked
in order to control effectively the stabilization
of the estimates. Though resampling has proven
practically useful in different contexts, theoretical
results supporting the resampling idea must be
developed in future research.

5. CONCLUSIONS

The Pathwise filter presented divergence in esti-
mates for a low signal-to-noise ratio in the state
noise variable for the Ornstein-Uhlenbeck pro-
cess with saturation on the observation. Prelim-
inary results showed that the referred filter can
be rewritten in a way where suggested weights
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Fig. 1. Averages and variances of the square error
ε, and weights K∆ and µ∆ for MCF with
noise state given by α = 0.10, 0.30, 0.50.

present sudden increase in its variance when the
filter starts diverging. To solve this problem, a re-
sampling scheme based on the effective number of
particles was used and results show that when the
weight variance is controlled, the filter estimates
become stabilized.
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