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Abstract: In this paper, firstly, one deals with the stability and the stabilizability
problems for the class of Markovian jump continuous-time singular systems. Next,
one will address the robustness problem. The proposed approaches derive sufficient
conditions such that the regularity and the absence of impulses are assured
as well as the stochastic stability and robust stochastic stability. Also, state
feedback control laws are designed to guarantee that the resulting closed-loop
system, with and without parameter uncertainties is regular, impulse free and
stable too. All the obtained results are based on strict linear matrix inequality
techniqueCopyright c©2005 IFAC.
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1. INTRODUCTION

During the past decades, singular systems have
received considerable interest, since this class
is more suitable than the conventional ones in
modelling practical systems in different areas
such as electrical power systems, mechanical sys-
tems, robotics, chemical systems, see for in-
stance, (Stykel, 2002; Dumont et al., 2001; Lewis,
1986; Gilles, 1998). Unfortunately, a large number
of industrial applications are subject to abrupt
changes in their structures, which include for in-
stance failures, repairs of machines in manufac-
turing systems, and modification of the operating
point of a linearized model of a nonlinear systems.
Consequently, Systems with this characterization
can’t be represented by deterministic models, but
may be modelled by the stochastic hybrid sys-
tems which are becoming more and more pop-
ular in describing their dynamics behavior. For
practical systems modelled by this class of sys-
tems, one refers the reader to (Boukas, 2005)
and the references therein. Now, there exists a

very rich list of references of articles dealing with
control problems for singular systems and Marko-
vian jump systems (Cao et al., 2000; Boukas and
Hang, 1999), however, because of the complexity
of singular systems with Markovian jumps, there
are rarely results for this kind of systems. Among
these contributions, one quotes the ones obtained
very recently by Boukas and Liu (2004), on sta-
bility and stabilization problems of continuous-
time Markovian jump singular system with time
delays. This motivates the authors to deal with
the linear Markovian jump singular system with
both parameter uncertainties and Wiener process.
To the best of our knowledge, there are no results
on robust stability and robust stabilizability for
this kind of systems. Moreover, many of the ex-
isting techniques for control of singular systems
assumed that the system under study is regular,
however, this property may be destroyed by the
state feedback inputs, also The linear matrix in-
equalities conditions proposed for the resolution
of this type of problems, contain very frequently,



equality constraints, which may cause numerical
problems. In view of this, the aim of this paper
is to derive sufficient conditions for the regularity,
absence of impulses and stability of the Markovian
jump linear singular system with Wiener distur-
bance, furthermore, a state feedback controller
design method is addressed such that the result-
ing closed-loop system is regular impulse-free and
stochastically asymptotically mean-square stable.
The robustness problem will be also investigated.
It should be pointed that the proposed conditions
are strict LMI.

The rest of this paper is organized as follows.
Section 2 states the problem to be studied. In
Section 3, sufficient conditions are established to
check the stochastic mean-square stability and de-
sign of the system under consideration. While the
robust conditions stability and stabilizability are
derived in Section 4. Finally, a numerical example
is given in Section 5 to show the applicability of
the proposed results.

Throughout this paper, the following notations
will be used. The superscript ”T ” denotes matrix
transposition and for symmetric matrices X and
Y the notation X > Y (respectively X < Y)
means that (X − Y) is positive-definite (resp.
negative-definite). I denotes the identity matrix
with the appropriate dimension. E[.] stands for
the mathematical expectation operator. ‖.‖ refers
to the Euclidian norm of vectors.

2. PROBLEM STATEMENT

Let us consider the class of uncertain Markovian
jump continuous-time singular linear system de-
fined on the probability space (Ω,z,P), with the
following dynamics:

{
Edxt = A(rt, t)xtdt + B(rt, t)utdt

+W(rt, t)xtdw(t),x(0) = x0

(1)

where xt ∈ Rn is the state, ut ∈ Rp is the control
at time t, w(t) is a standard Wiener process that
is supposed to be independent of the Markov
process {rt, t ≥ 0}, W(rt) is the noise matrix
that is supposed to be known for each rt ∈ S
and the matrix E ∈ Rn×n may be singular, with
rank(E) = nE ≤ n, A(rt, t) is the state matrix,
B(rt, t) is the control matrix, supposed to have
the following forms:

{
A(rt, t) = A(rt) + DA(rt)FA(rt, t)EA(rt)
B(rt, t) = B(rt) + DB(rt)FB(rt, t)EB(rt)

(2)

with A(rt),DA(rt),EA(rt),B(rt),DB(rt) and
EB(rt) are real known matrices with appropriate
dimensions, and FA(rt, t) and FB(rt, t) are un-
known matrices that satisfy the following:

{
FT

A(rt, t)FA(rt, t) < I
FT

B(rt, t)FB(rt, t) < I
(3)

The time-varying parameter uncertainties are said
to be admissible if both (2) and (3) hold.
The continuous-time Markov process {rt, t ≥ 0}
takes its values in a finite set S = {1, 2, . . . , N}
with the transition probability given by:

P [rt+∆t = j|rt = i] =

{
λij∆t + o(∆t) i 6= j

1 + λii∆t + o(∆t) i = j

where ∆t > 0, lim∆t→0
o(∆t)
∆t = 0, and λij is the

transition probability rate from the mode i to the
mode j at time t, which satisfies λij ≥ 0, for all
i, j, i 6= j, and λii = −∑N

j=1,j 6=i λij .

In the rest of the paper, we address the stochastic
stability problem for the class of system described
by (1), with ut = 0, and its robustness. Also, the
problem of designing a state feedback controller
such that the closed-loop system is regular, im-
pulse free and stochastically mean-square stable,
will be studied, as well as the robustness control
problem.

Before establishing these results, one recalls the
following definitions for the unforced stochastic
singular system (1) (i.e u(t) = 0 for all t ≥ 0):

Definition 2.1. (Dai, 1989) For any given two
matrices E,A ∈ Rn×n and rt ∈ S

a. The pair (E,A(i)) is said to be regular if
det(sE−A(i)) is not identically zero, for each i .

b. The pair (E,A(i)) is said to be impulse free
if deg(det(sE−A(i))) = rank(E).

Definition 2.2. System (1), with ut = 0, for all
t ≥ 0, is said to be:

(i) stochastically asymptotically stable in mean-
square sense (SASMSS), if for any initial
condition (x0, r0):

lim
t→0

E‖x(t)‖2 = 0 (4)

(ii) stochastically stabilizable in the above sense,
if there exists a linear state feedback

u(t) = K(rt)xt (5)

with K(i) is a gain controller for each
i ∈ S, such that the closed-loop system
is (SASMSS), for every initial condition
(x0, r0).

the following Lemmas will be used for the proof
of our results:



Lemma 2.1. (Peterson, 1987) Let Ω, F and Ξ
be real matrices of appropriate dimensions with
FT F ≤ I. For any scalar ε > 0:

ΩFΞ + ΞT FT ΩT ≤ εΩΩT + ε−1ΞT Ξ (6)

Lemma 2.2. (Cao et al., 2000) For any real matri-
ces Λ, Π and Y satisfying Y > 0. The following
holds :

ΛΠ + ΛT ΠT ≤ ΛY−1ΛT + ΠT YΠ (7)

Lemma 2.3. (Boukas and Liu, 2004) Any matrices
U, V ∈ Rn∗n with V > 0, satisfy :

UV−1UT ≥ U + UT − V (8)

In the next section, one starts by considering that
all the uncertainties are equal to zero, then, the
stochastic asymptotic stability condition for the
nominal system under study, will be established,
on another side, one will design a state feedback
controller of the form (5) such that the resulting
closed-loop system is regular, impulse free and
stochastically asymptotically mean-square stable
(RISS) as well.

3. STABILITY AND STABILIZATION

As the stability is the first requirement of any
control design, one starts by establishing a suffi-
cient condition under which the unforced nominal
system is (RISS) simultaneously. The following
theorem gives this result:

Lemma 3.1. If there exist a set of symmetric and
positive-definite matrices P = (P(1), . . . ,P(N))
and a set of matrices H = (H(1), . . . ,H(N)) such
that the following LMI holds for every i ∈ S:

Θ(i) =
[

J(i) WT (i)ET P(i)
P(i)EW(i) −P(i)

]
< 0 (9)

where:
J(i) = ET P(i)A(i) + AT (i)P(i)E
+ HT (i)RT (i)A(i) + AT (i)R(i)H(i)
+

∑N
j=1 λijET P(j)E, R(i) ∈ Rn×nE is any matrix

such that ET R(i) = 0, then the nominal system
(1) with ut = 0, t ≥ 0 is (RISS).

The proof of this Lemma is omitted due to the
limited paper length.

Lemma 3.1 provides a sufficient condition for the
Markovian jump singular system with Wiener
disturbance to be (RISS). The proposed condition
is a strict LMI, which is much more tractable and
reliable in numerical computation than the non

strict one as reported in a lot of works dealing
with the problems of stability and stabilizability
for singular systems, see for instance (Chun-Liang,
1999).

Now, one will synthesize a suitable state feedback
controller such as the system in closed loop is
(RISS). The following theorem summarizes this
result:

Theorem 3.1. If there exist, a set of symmetric
and positive definite matrices P = (P(1), . . . ,P(N))
and a set of matrices H = (H(1), . . . ,H(N)) and
X = (X(1), . . . ,X(N)) such that the following
holds for each i ∈ S:




Φ(i) WT (i)ET P(i)
P(i)EW(i) −P(i)

BT (i)[P(i)E + R(i)H(i)] 0

[P(i)E + R(i)H(i)]T B(i)
0

−P(i)


 < 0 (10)

where:
Φ(i) = [P(i)E + R(i)H(i)]T A(i) + XT (i) + X(i)
+ AT (i)[P(i)E + R(i)H(i)]−PT (i)
+

∑N
j=1 λijET P(j)E, and R(i) ∈ Rn×nE is any

matrix such that ET R(i) = 0, then the resulting
closed-loop system under study (1) is (RISS), and
the stabilizing controller gain is given by K(i) =
P−1(i)X(i), i ∈ S.

Proof of the Theorem 3.1: For this purpose,
plugging controller (5) in the dynamics (4) gives:

Extdt = Ac(rt)xtdt +W(rt)xtdw (11)

with Ac(rt) = A(rt) + B(rt)K(rt). Then, based
on the results of Lemma 3.1, this closed-loop
system is (RISS) if the following LMI holds for
every i ∈ S:

[
Φ(i) WT (i)ET P(i)

P(i)EW(i) −P(i)

]
< 0 (12)

Where:
Φ(i) = ET P(i)Ac(i) + Ac

T (i)P(i)E
+ HT (i)RT (i)Ac(i) + Ac

T (i)RT (i)H(i)
+

∑N
j=1 λijET P(j)E.

Now, replace Ac(i) by its expression then Φ(i)
becomes:
Φ(i) = [P(i)E+R(i)H(i)]T A(i)+AT (i)[P(i)E+
R(i)H(i)] + [P(i)E + R(i)H(i)]T BT (i)KT (i)
×K(i)B(i)[P(i)E+R(i)H(i)]+

∑N
j=1 λijET P(j).

remark 3.1. It must be remarked that the intro-
duction of any matrices H(i) and R(i) such that



ET R(i) = 0, will remove the equality E>P(i) =
P>(i)E usually used in a lot of papers dealing
with the problem of the control for singular sys-
tem, which may cause some numerical problems,
by using the equality

[
ET P(i)+HT (i)RT (i)

]
E =

ET
[
P(i)E+R(i)H(i)

]} that is automatically ver-
ified. It should be noted that, as matrix E is in-
dependent of the mode, without loss of generality,
we can also choose the matrix R(i) independent
of the mode. The same remark can be made for
the matrix H(i).

On the other hand, by applying Lemma 2.2 to the
term [P(i)E+R(i)H(i)]T B(i)K(i)+KT (i)BT (i)
×[P(i)E+R(i)H(i)], letting X(i) = P(i)K(i) and
according to Lemma 2.3, one obtains:

[P(i)E + R(i)H(i)]T B(i)K(i)

+KT (i)BT (i)[P(i)E + R(i)H(i)]

≥ XT (i) + X(i)−PT (i)

+[P(i)E + R(i)H(i)]T B(i)P−1(i)

×BT (i)[P(i)E + R(i)H(i)]

Hence, substituting (13) into (12), and applying
Schur complement formula, yields (10), this ends
the proof.

4. ROBUST STABILITY AND ROBUST
STABILIZATION

The objective of this section is to derive sufficient
conditions for robust stochastic mean-square sta-
bility for the class of system under study. Our
attention is also to develop a state feedback con-
troller of the form (5) that will robustly stochasti-
cally stabilizes the closed-loop system. One starts
by giving the following theorem that states the
condition under which the unforced system (1) is
robustly stochastically stable (RSS) :

Theorem 4.1. If there exist, a set of symmetric
and positive-definite matrices P = (P(1), . . . ,P(N)),
a set of matrices H = (H(1), . . . ,H(N)) and a set
of positive scalars εA = (εA(1), . . . , εA(N)) such
that the following LMI holds for every i ∈ S and
all admissible uncertainties:




Γ(i) WT (i)ET P(i)
P(i)EW(i) −P(i)

(P(i)E + R(i)H(i))DA(i)T 0

(ET P(i) + HT (i)RT (i))DA(i)
0

−εA(i)I


 < 0 (13)

with:
Γ(i) = ET P(i)A(i) + AT (i)P(i)E
+ HT (i)RT (i)A(i) + AT (i)R(i)H(i)

+
∑N

j=1 λijET P(j)E + εA(i)EA(i)T EA(i),
and R(i) ∈ Rn×nE is any matrix such that
ET R(i) = 0,
then, the unforced system (1) is regular impulse-
free and robustly stochastically mean-square sta-
ble (RIRSS).

Proof: Based on the result of the theorem 3.1, and
using (2), the system (1) is stochastically stable if
the following holds:

ET P(i)A(i) + AT (i)P(i)E

+HT (i)RT (i)A(i) + AT (i)R(i)H(i)

+(ET P(i) + HT (i)RT (i))DA(i)FA(i, t)EA(i)

+ET
A(i)FA

T (i, t)DA
T (i)(P(i)E + R(i)H(i))

+WT (i)ET P(i)EW(i) +
N∑

j=1

λijET P(j)E (14)

Then by applying Lemma 2.1 to (14), and after
using Schur complement, one obtains (13).

Now, one can design a suitable state feedback
controller that robustly stochastically stabilizes
(1). To this end, let us set (5) in the system
dynamics, this yields to the following:

Extdt = Ac(rt, t)xtdt +W(rt)xtdw(t) (15)

with Ac(rt, t) = A(rt, t) + B(rt, t)K(rt).
Under the condition of the theorem (4.1), the
closed-loop system is (RSS) if the following LMI
holds for every i ∈ S:




Γ(i) WT (i)ET P(i)
P(i)EW(i) −P(i)

(P(i)E + R(i)H(i))DA(i)T 0

(ET P(i) + HT (i)RT (i))DA(i)
0

−εA(i)I


 < 0 (16)

with:
Γ(i) = ET P(i)A(i) + AT (i)P(i)E
+ HT (i)RT (i)A(i) + AT (i)R(i)H(i)
+ εA(i)EA(i)T EA(i) +

∑N
j=1 λijET P(j)E

+ (ET P(i) + HT (i)RT (i))B(i)K(i)
+ KT (i)BT (i)(P(i)E + R(i)H(i))
+(ET P(i)+HT (i)RT (i))DB(i)FB(i, t)EB(i)K(i)
+ KT (i)EB

T (i)FT
B(i, t)DB

T (P(i)E + R(i)H(i))

then by applying lemma 2.1 one obtains the
following:

[P(i)E + R(i)H(i)]T DB(i)FB(i, t)EB(i)K(i)

+KT (i)EB
T (i)FT

B(i, t)DB
T [P(i)E + R(i)H(i)]

≤ εB(i)KT (i)EB
T (i)EB(i)K(i)

+ε−1
B (i)[P(i)E + R(i)H(i)]T DB(i)DB

T (i)

×[EP(i) + R(i)H(i)]



this together with (13), and taking into consider-
ation that KT (i)EB

T (i)EB(i)K(i) > 0, (16) will
be satisfied with:

Γ(i) = AT (i)[P(i)E + R(i)H(i)] + X(i) + XT (i)

+[P(i)E + R(i)H(i)]T A(i)−PT (i)

+ε−1
B (i)[P(i)E + R(i)H(i)]T DB(i)DB

T (i)

×[P(i)E + R(i)H(i)] + εA(i)EA
T (i)EA(i)

+[P(i)E + R(i)H(i)]T B(i)P−1(i)BT (i)

×[P(i)E + R(i)H(i)] +
N∑

j=1

λijET P(j)E (17)

Hence, by using Schur complement formula to
(17), (16) becomes:




Υ(i) WT (i)ET P(i)
P(i)EW(i) −P(i)

BT (i)[P(i)E + R(i)H(i)]

DA
T (i)[P(i)E + R(i)H(i)] 0

DB
T (i)[P(i)E + R(i)H(i)](i) 0

[P(i)E + R(i)H(i)]T B(i) [P(i)E + R(i)H(i)]T DA(i)
0 0

−P(i) 0
0 −εA(i)I
0 0

[P(i)E + R(i)H(i)]T DB(i)
0
0
0

−εB(i)I


 < 0 (18)

where:
Υ(i) = [P(i)E+R(i)H(i)]T A(i)+AT (i)[P(i)E+
R(i)H(i)]+X(i)+XT (i)−PT (i)+εA(i)EA

T (i)EA(i)
+

∑N
j=1 λijET P(j)E

The following theorem summaries this result:

Theorem 4.2. If there exist, a set of symmetric
and positive-definite matrices P = (P(1), . . . ,P(N)),
a set of matrices H = (H(1), . . . ,H(N)) > 0,
X = (X(1), . . . ,X(N)) > 0 and a set of posi-
tive scalars εA = (εA(1), . . . , εA(N)), and εB =
(εB(1), . . . , εB(N)), such that (18) holds for each
i ∈ S, and all admissible uncertainties, then the
closed-loop system is (RIRSS). In this case, the
robustly stabilizing controller gain is given by
K(i) = P−1(i)X(i).

In the following section, one will demonstrate the
validity of the proposed results by considering the
following numerical example.

5. EXAMPLES

let us suppose that the generator matrix Λ and
the matrix E are given by:

Λ =
[−2.00 2.00

1.00 −1.00

]
,E =




2.00 1.00 0.00
2.00 1.00 0.00
0.00 0.00 1.00


 .

Let the dynamics and the uncertainties in each
mode be given as follows:

A(1) =

[
1.50 0.50 1.00
−1.00 0.00 1.00
0.50 0.00 1.00

]
,DB(1) =

[
0.0100
0.2000
0.1000

]
,

W(1) =

[
0.30 0.00 0.10
0.00 0.04 0.00
0.10 0.00 0.30

]
,B(1) =

[
1.00 1.00 0.10
6.00 3.00 0.10
0.00 2.0 0.10

]
,

DA(1) =

[
0.01
0.20
0.12

]
,EA(1) =

[
0.20 0.10 0.01

]
.

A(2) =

[
1.00 0.50 1.00
−1.00 0.00 1.10
0.20 0.00 1.00

]
,DB(2) =

[
0.20
0.30
0.10

]
,

W(2) =

[
0.10 0.00 0.10
0.10 0.00 0.04
0.02 0.10 0.30

]
,B(2) =

[
0.20 0.20 0.80
0.40 0.00 0.20
0.00 0.40 0.20

]
,

DA(2) =

[
0.13
0.10
0.10

]
,EA(2) =

[
0.03 0.01 0.02

]
.

The purpose is to design a robust state feedback
controller such that the closed-loop system is
regular, impulse free and robustly stochastically
asymptotically stable in mean-square sense. To
this purpose, we choose R(1) and R(2) as follows:

R(1) =
[
1.00 −1.00 0.00

]>
,

R(2) =
[
2.00 −2.00 0.00

]>
.

For the computation, let us choose the following:
εA(1) = εB(1) = 0.50, εA(2) = εB(2) = 0.30, and
solving the LMIs (18), one get:

P(1) =




0.8222 −0.3384 −0.1677
−0.3384 0.9386 −0.1124
−0.1677 −0.1124 0.5221


 ,

P(2) =




0.6563 −0.2597 −0.0463
−0.2597 0.5679 −0.1004
−0.0463 −0.1004 0.6319


 ,

H(1) =
[
1.6718 0.7682 −0.0680

]
,

H(2) =
[−0.4637 −0.3872 −0.1549

]
,

X(1) =



−2.9726 0.0000 −0.0000
−2.9359 −0.8778 0.0000
−2.4813 −2.2914 −0.8632


 ,

X(2) =




0.1503 0.0000 0.0000
−0.2988 −0.2397 0.0000
−0.8808 −1.0837 −0.6485


 .

which gives the following gain matrices:



K(1) =



−8.4407 −2.1099 −0.5746
−7.2516 −2.3635 −0.4385
−9.0251 −5.5756 −1.9324


 ,

K(2) =



−0.2419 −0.5324 −0.1861
−0.9121 −1.0039 −0.2768
−1.5565 −1.9136 −1.0839


 .

6. CONCLUSION

In this paper, one studied the problem of stability
and stabilizability for stochastic singular systems
with both Markovian jumps and Wiener process.
Sufficient strict LMI condition for the stability
has been presented, and without requiring the
regularity assumption, LMI approach has also
been developed to design stabilizing state feed-
back controller which guarantees that the closed-
loop system is regular, impulse free as well as
stochastically asymptotically mean-square stable.
The robustness problem was tackled too.

REFERENCES

Boukas, E. K. (2005). Stochastic Switching Sys-
tems Analysis and Design: Theory and Ap-
plications. Birkhauser. Boston.

Boukas, E. K. and H. Hang (1999). Expo-
nential stability of stochastic systems with
markovian jumping parameters. Automatica
35, 1437–1441.

Boukas, E. K. and Z. K. Liu (2004). Delay-
dependent stabilization of singularly per-
turbed jump linear systems. International
Journal of Control 77, 310–319.

Cao, Y. Y., X. Sun and J. Lam (2000). Robust
H∞ control of uncertain markovian jump
systems with time-delay. IEEE Transactions
on Automatic Control 45, 77–83.

Chun-Liang, L. (1999). On the stability of uncer-
tain linear descriptor systems. Journal of the
Franklin Institute 36, 1549–564.

Dai, L. (1989). Singular Control Systems.
Springer-Verlag. New York.

Dumont, Y., D. Goeleven and M. Rochdi (2001).
Reduction of second order unilateral singular
systems: Applications in mechanics. Zamm.
Z. Angrew. Math. Mech 81, 219–245.

Gilles, E. D. (1998). Network theory for chemical
processes. Chem. Eng. Technol 21, 121–132.

Lewis, F. K. (1986). A survey of linear singular
systems. Circuit Systems Signal Process 5, 3–
36.

Peterson, I. R. (1987). A stabilization algorithm
for a class of uncertain linear systems. Sys-
tems Control Letter 8, 351–357.

Stykel, T. (2002). On criteria for asymptotic
stability of differential algebraic equations.
Zamm. Z. Angrew. Math. Mech 82, 147–158.


