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Abstract: In this paper, we propose to regulate the output of an autocatalytic
bioprocess by means of a recirculation loop. We show that controlling the
recirculation flow rate allows the stabilization of a particular output under a
constant or even an unknown input flow. Furthermore, we obtain a convergence
in finite time with a smooth feedback law Copyright c©2005 IFAC.
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1. INTRODUCTION

For about thirty years, the control of bioprocesses
has attracted lots of attention. Motivated by im-
portant application domains (in particular agro-
food, pharmaceutical and wastewater treatment
industries), a number of control techniques have
been proposed. Because the most common process
used in the above cited industries can be assimi-
lated to the well-known chemostat (also known as
the Continuous Stirred Tank Reactor or CSTR),
most of the available approaches have been de-
veloped for this popular process and consider the
control of the output substrate concentration S
using the input flow rate as the control variable
such that S remains smaller than a upper limit
S? as synthetically shown in Figure 1. Note that
closer S and S? are, greater is the mean value of
Qin. In other terms, in this context controlling
S around the setpoint S? is a common control
objective when dealing with these systems.

1 This work was supported by the french INRA-INRIA
project “MERE”.

Among all available nonlinear approaches to do
so, no doubt that the linearizing control first
proposed in (Bastin and Dochain, 1990) is the
most popular one. It is based on the following
general mass balance model of a biological reactor





Ẋ =
Q

V
(Xin −X) + µ(S)X ,

Ṡ =
Q

V
(Sin − S)− µ(S)

Y
X ,

(1)

where S and X stand for the biomass and the
substrate concentrations (in mg/l) in the reactor,
Q is the input flow rate (in l/h), Sin and Xin are
the input substrate and input biomass concentra-
tions (in mg/l), Y is the conversion yield (in mg
of substrate consumed by mg of biomass formed),
µ(S) is the reaction rate (in t−1) and V is the
volume of the reactor (in l).

One can check readily that the feedback Q(X, S) =
V λ(S?−S)+µ(S)X

Y (Sin−S) , with λ > 0, globally exponen-
tially stabilizes the variable S of the model (1)
about S? with a linear dynamics. A number of
advantages and drawbacks of this control can be
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Fig. 1. General view of a CSTR controlled by means of input flow rate.

advanced. On the one hand, in particular, the
knowledge of both the kinetics and the biomass
concentration are necessary. That is why an adap-
tive version has been suggested. On the other
hand, the stabilization of the process is global,
which means that the output substrate concen-
tration can be controlled in the unstable range
of a non-monotonic kinetics such as an Haldane
growth function. Following this study, a number
of alternative control feedback laws have been
proposed, in particular to take into account un-
certainty on the measurements of either the input
or output substrate concentration and/or on the
kinetics. For example, PI based controllers (Cf.
(Alvarez-Ramirez and Femat, 1999)) or adaptive
gain techniques (Cf. (Allgower et al., 1997)) can
be used to stabilize bioreactors without using any
knowledge about the kinetics. However, in these
cases no guarantee on the speed of convergence is
provided. Sliding mode techniques allow a conver-
gence in finite time but yield discontinuous feed-
back laws, which are robust only against matched
disturbances (Cf. (Zlateva, 1997) and (Tham et
al., 2003)). Another approach is based on guar-
anteed dynamical intervals on the uncertainty (Cf
(Rapaport and Harmand, 2002)). In particular,
this control strategy allows an exponential conver-
gence towards an arbitrarily small interval about
the setpoint. Finally, other approaches only need
a limited knowledge of the process and guar-
antee asymptotic convergence, Cf. for instance
(Antonelli et al., 2003) for monotonic kinetics or
(Mailleret et al., 2004) in which an additional
measurement (the gaseous flow rate) is needed.

However, to the best of our knowledge, all the
above cited approaches use the input flow rate as
the control variable. As a consequence, a storage
tank is needed before the process. In this paper,
we consider the particular process configuration
represented in Figure 2 where 0 ≤ α ≤ 1 and β ≥
0. This configuration was recently proposed within
the framework of studies devoted to the optimal
steady state design of bioprocesses (cf. (Harmand
et al., 2003)). In bioprocess engineering, an usual
objective is to regulate a particular output about a
nominal value or a reference trajectory. Typically,
in biological wastewater treatment plants, the aim
is to regulate the output substrate concentration
under some prescribed value. Here the use of the
α and β parameters is investigated for the control
of the output substrate concentration.

Thus, under some conditions that will be high-
lighted hereafter, the output of the process can be
tracked along a desired reference trajectory, while
the input flow rate Q, possibly unknown, can vary
with time.

This paper is organized as follows. First (Section
2), the model of the process is presented. Then, in
Section 3, the control design is exposed. In Section
4, simulations are performed and discussed while
conclusions and perspectives are drawn in Section
5.

2. PROBLEM STATEMENT

Consider the device configuration pictured in Fig-
ure 2 where the function D(t) = Q(t)/V is given,
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Fig. 2. General view of the bioprocess configuration under interest in the present study.

possibly constant. The model of this second sys-
tem can be written as




Ẋ = D(t)(βXout + αXin − (α + β)X) + µ(S)X ,

Ṡ = D(t)(βSout + αSin − (α + β)S)− µ(S)
Y

X ,

where




Xout =
(1− α)Xin + (α + β)X

1 + β
,

Sout =
(1− α)Sin + (α + β)S

1 + β
,

with 0 ≤ α ≤ 1 and β ≥ 0.

Introducing these expressions of Xout and Sout in
the dynamics given above, and posing u = (α +
β)/(1 + β) (0 ≤ u ≤ 1) simplify the system as
follows





Ẋ = uD(t) (Xin −X) + µ(S)X ,

Ṡ = uD(t) (Sin − S)− µ(S)
Y

X .

(2)

We recall that Y is a positive constant.

The problem investigated in the remaining part of
the paper is the regulation of the output

Sout = uS + (1− u)Sin . (3)

To summarize, instead of regulating the variable
S of the system (1) by means of D, one intends to
control the output Sout of the system (2) about
S?

out by means of u.

We solve this problem under the realistic as-
sumption that the input concentrations are time-
varying but bounded

(Xin(t), Sin(t)) ∈ [Xin, Xin]× [Sin, Sin], ∀t ≥ 0,

where Xin ≥ Xin ≥ 0 and Sin ≥ Sin > 0 are
known numbers.

We consider also S?
out as a time-varying reference

trajectory to be tracked, with the following hy-
pothesis.

Hypothesis H0. There exist numbers S
?

out ≥
S?

out > 0 such that S?
out(t) ∈ [S?

out, S
?

out] for all
t ≥ 0, with

S
?

out < Sin .

3. CONTROL DESIGN

We first introduce usual assumptions on the
growth function µ(·).
Hypothesis H1. The function µ(·) is a non-
decreasing Lipschitz continuous function with
µ(0) = 0.

In this approach, the input flow rate D(·) is not
chosen and could even be unknown. Nevertheless,
we require it to be bounded, with known bounds.

Hypothesis H2. There exist numbers D ≤ D and
T ≥ 0 such that D(t) ∈ [D, D] for all t ≥ T , with
D > 0 and

D < µ(S?
out)

Xin + Y (Sin − S?
out)

Y (Sin − S?
out)

. (4)



Proposition 1. Assume H0-H1-H2 are satisfied by
the system (2). Then for any initial condition such
that X(0) > 0 and 0 ≤ S(0) < Sin, the feedback

u?(t, S) =

∣∣∣∣∣∣∣

Sin(t)− S?
out(t)

Sin(t)− S
if S ≤ S?

out(t)

1 if S > S?
out(t)

(5)

tracks the output Sout(·), defined in (3), at S?
out(·)

in finite time.

Proof. From H1 and 0 ≤ S(0) < Sin, we
straightforwardly deduce that the solution of (2)
is such that 0 ≤ S(t) < Sin, ∀t ≥ 0 for any non-
negative control law. Furthermore, from H0, the
feedback law (5) is well defined and the inequality
u?(t, S) > 1 − S

?

out/Sin > 0 is satisfied for any
S ∈ [0, Sin[. From (2) and X(0) > 0, we deduce
also that X(t) > 0 for all t ≥ 0.

Consider the function

Z(t) = X(t) + Y S(t) (6)

along with Zin(t) = Xin(t)+Y Sin(t) ∈ [Zin, Zin],
where Zin = Xin + Y Sin and Zin = Xin + Y Sin.
A simple calculation yields

Ż = −u∗(t, S(t))D(t)(Z − Zin(t)) .

Thus, from H2, we infer that Z(t) converges
exponentially towards [Zin, Zin]. The dynamics of
the variable S can also be written as follows

Ṡ = F (t, S, Z)

= u∗(t, S)D(t)(Sin(t)− S)− µ(S)
Y

(Z − Y S)

from which we derive the following inequality

F (t, S, Z) ≤ u∗(t, S)D(t)(Sin − S)

−µ(S)
Y

(Zin − Y S) +
µ(S)
Y

(Zin − Z) .
(7)

Before analyzing the behavior of the solutions of
the S subsystem, we give some remarks, which are
instrumental in establishing the output regulation
result.

Posit δ = µ(S?
out)(Zin − Y S?

out)/Y − D(Sin −
S?

out). The condition (4) ensures that δ > 0 and,
for all t ≥ T ,

F (t, S?
out, Z) ≤ −δ +

µ(S?
out)

Y
(Zin − Z) .

The convergence of Z(t) towards [Zin, Zin] im-
plies then the existence of T1 ≥ T such that

F (t, S?
out, Z(t)) ≤ −δ

2
< 0, t ≥ T1 . (8)

Let us consider now S ∈ [S?
out, Sin[ that we regard

as a constant. Let t ≥ T . One can check readily
that

F (t, S, Z) ≤ (D − µ(S?
out))(Sin − S)

−µ(S)
Y

(Zin − Y Sin) +
µ(S)
Y

(Zin − Z) .
(9)

We are ready now to prove the announced result.
We distinguish between two cases.

Case 1: S(T1) ≤ S?
out. The property (8) implies

then that for all t > T1, one has S(t) < S?
out. It fol-

lows that u∗(t, S(t)) = (Sin(t)−S?
out(t))/(Sin(t)−

S(t)). Consequently, Sout(t) = S?
out(t).

Case 2: S(T1) > S?
out. We will show that necessar-

ily S(t) reaches S?
out in finite time, which will bring

us back to Case 1.We proceed by contradiction:
assume that S(t) > S?

out for all t ≥ T1.

If Zin > Y Sin and D ≤ µ(S?
out) (note that

condition (4) is necessarily fulfilled), then from (9)
and the convergence of Z(·) towards [Zin, Zin], we
deduce the existence of T2 ≥ T1 such that

F (t, S, Z(t)) ≤ − 1
2

µ(S?
out)

Y
(Zin − Y Sin) < 0

for all t ≥ T2. We conclude that S(·) reaches S?
out

in finite time, thus a contradiction.

If Zin > Y Sin and D > µ(S?
out), we obtain the

following inequality from (9) and (4)

F (t, S, Z) ≤ −δ +
µ(S)
Y

(Zin − Z) .

The asymptotic properties of Z(·) allow then to
write

F (t, S, Z(t)) ≤ −δ

2
< 0, t ≥ T ′2

for a certain T ′2 ≥ T1. Thus we obtain again a
contradiction.

Finally, if Zin ≤ Y Sin, then condition (4) ensures
D < µ(S?

out). One can then write, from (2) and
(6) the following inequalities for all t ≥ T1

Ẋ ≥ (µ(S?
out)−D)X ,

Ṡ ≤ −(µ(S?
out)−D)

X

Y

+
D

Y
(Y Sin − Zin) +

D

Y
(Zin − Z(t)) .

As X(T1) is positive, X(·) is increasing, and there
exist γ > 0, T ′1 ≥ T1 such that (µ(S?

out) −
D)X(t) > D(Y Sin − Zin) + γ for all t ≥ T ′1.
From the convergence of Z(·), we deduce that
there exists T ′′2 ≥ T ′1 such that

Ṡ(t) ≤ − γ

2Y
< 0, t ≥ T ′′2



that leads again to a contradiction.

Remark 2. Neither D (which can be time-varying),
nor the biomass concentration or the kinetics need
to be known for the synthesis of this law: only the
online values of S(t) and the knowledge of Sin(t)
are necessary. However, since we use a specific
configuration including a recirculation loop, two
valves (or at least one controllable valve and one
pump) are necessary to independently control α
and β instead of only one, as in the case of a simple
chemostat.

4. NUMERICAL SIMULATIONS AND
DISCUSSION

Numerical simulations were performed using the
control law presented hereabove, with a Monod
growth function: µ(S) = µmaxS/(KS + S). In
other words, only S and Sin were measured on-
line. The following model parameters were used :
µmax = 0.045, KS = 10, Y = 0.05, V = 40, Q is
the sum of a constant (Q̄ = 0.8 l/h) and of three
other signals

i) a sinusoide of magnitude 0.1 and of frequency
0.02,

ii) a signal of magnitude 0.04 and of frequency
0.0002,

iii) a random signal of maximum magnitude
0.06.

Thus, at t = 500, a setpoint step was simulated.
The input substrate concentration is measured
and is built as follows. It consists in the sum of

i) a constant equal to 475 mg/l
ii) a sinusoide of magnitude 25 and of frequency

0.01
iii) a square signal of magnitude 15 and of fre-

quency 0.005
iv) a random signal of maximum magnitude 5.

The objective is to regulate the output substrate
concentration Sout about S?

out = 20 mg/l. First,
it was verified that condition (4) holds given the
extreme expected values of D, Sin and S?

out. The
simulations were performed over a period of 300
hours. The results are shown in Figures 3 to 6.

From these numerical simulations, a number of
general advantages and drawbacks of this control
algorithm can be pointed out :

(1) First, since D is disturbed, the performances
of the control can be affected during transient
periods if the state if far from its equilibrium
setpoint. In particular, if X(0) is very small,
it can take some time for Sout to converge
towards S?

out. However, after the controlled
variable has converged towards that setpoint
- in finite time - the performances are obvi-
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Fig. 3. The input substrate concentration Sin(t)
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Fig. 5. The controlled variable (Sout, dotted line)
and the setpoint (S?

out)

ously excellent. The price to pay when choos-
ing this configuration is that, in most cases,
the volume of the reactor of the configuration
(2) is greater than that one obtained when
optimally designing a single chemostat. It is
due to the fact that using our control leads to
an equilibrium value S̄ in the reactor which is
smaller than the equilibrium value S?

out (and
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that is precisely what condition (4) guaran-
tees).

(2) Second, it should be noticed that Sin, D and
S?

out can be time-varying. The only need is to
measure S and Sin continuously.

(3) Finally, it should also be noted that this con-
trol law seems to be particularly appropriate
when a clogging can arise in the pump used to
feed in the reactor (in particular because the
control does not use D). It seems also partic-
ularly well suited for wastewater treatment
control where the input flow rate is really a
disturbance.

Of course, the above results have been obtained
in assuming that no noise were corrupting mea-
surements. In order to show the robustness of the
control law (however we do not investigate the
theoretical robustness of the control here) and
investigate its practical implementation, we have
added some noise in the measurements of S and
Sin. The result of the regulated variable is plotted
in figure 7.
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Fig. 7. The controlled variable (Sout, dotted line)
and the setpoint (S?

out) when the measure-
ments are noisy

5. CONCLUSIONS

In this paper, the control of a bioprocess by means
of a recirculation loop was investigated. The con-
trol law proposed needs more actuators than when
controlling a single chemostat. However, the re-
quired knowledge is very limited: only the on line
measures of Sin and S are necessary. Furthermore,
the satisfactory simulation results obtained make
this control law really attractive. The case where
Sin is unknown will be the matter of a forthcoming
work, leading to an adaptive feedback law.
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