

TWO PHASE TECHNIQUE FOR ASSEMBLY LINE BALANCING

Jüri Vain, Ingmar Randvee, Tiit Riismaa

Tallinn Technical University, Institute of Cybernetics
 Akadeemia tee 21, 12618 Tallinn, Estonia

Abstract: A two-phase technique for solving flexible assembly line balancing problems is
proposed. In the first phase a global solution is found to the task assignment problem
using known algorithmic branch-and-bound techniques. In the second phase the
workstations with critical workload are selected and the workstation time is re-
calculated/reduced using task models of finer granularity. The workstation models in the
second stage are represented as parallel compositions of timed automata to which the
parametric model checking technique can be efficiently applied. The method combines
the advantages of coarse level line balancing algorithms and fine grain model checking.
The modeling rules of second stage are defined which guide the model construction and
property specification for estimating the workstation load and parameters in the presence
of specific operational and timing constraints. Copyright © 2005 IFAC

Keywords: assembly lines, structural optimization, finite automata, models, verification

1. INTRODUCTION

The line balancing problem consists of repetitive
distributing of tasks among workstations while
optimizing some criteria such as cost, productivity,
reliability, maintainability, etc., subject to the
previously defined and currently added constraints.
An overview and extensive analysis of different line
balancing problem settings and methods are given in
(Scholl, 1999; Hopp and Spearman, 1996; Scholl and
Klein, 1997). One intensively studied group of
methods (Scholl, 1999; Hoffmann, 1992) is aimed at
solving simple assembly line balancing problems
(SALBP) for real size industrial assembly lines.
SALBP is stated as follows: minimise the balance
delay time provided cycle time, task times and task
precedence graph are given. For example, SALOME
technique (Scholl and Klein, 1997) can optimize the
structure of an assembly line with several hundreds
of tasks and provide a minimal set of workstations
(WS) together with the tasks assigned to each WS.
Line balancing problems, where models and

constraints of finer granularity have to be taken into
account, are very hard to solve with given
algorithms.
On the other hand model checking (MC), has shown
to be a promising method for analysis of systems
with irregular, timing and other quantitative
constraints (Clarke, et al.,1999; Lindahl, et al., 1998).
As any enumerative method, MC may be inefficient
in case the model includes a large number of parallel
components. Feasible results can be achieved in
cases where some tens of tasks and few parallel
machines are incorporated in the WS (Vain and
Küttner, 2001; Vain, et al., 2002).
The aim of this paper is to show the advantages of
integrating the traditional branch-and–bound
methods with MC. A two-phase approach for solving
assembly line balancing problem is suggested. In the
first phase the line balancing problem is solved on
the coarse-grain model which is given in terms of
line tasks assuming that all WS-s are functionally
uniform and the precedence relation between tasks is
given. In the second phase, the set of task models of

operation level granularity with finer performance
and synchronization constraints is studied. To obtain
more accurate estimate of WS time the behavioral,
cost, reliability and other constraints may be
included. The goal of detailed analysis is to detect if
the cycle time of the assembly line may be reduced,
preserving the same assignment of tasks prescribed
by the first phase solution.
The paper is organized as follows. In section 2 we
give a general description of the two-phase approach
to line balancing problem. Section 3 is concerned
with construction of detailed WS models using timed
automata. In section 4 detailed analysis of WS time
using MC is considered. The last section illustrates
the modeling approach of Section 3 with an
example.

2. DESCRIPTION OF THE APPROACH

The proposed approach to the control of flexible
assembly line balancing is based on repetitive search
of best distribution of tasks by solving the task
assignment problem for current time step in two
phases: • Phase 1: Solve the SALBP using coarse grain

methods, e.g., such as SALOME (Scholl and
Klein, 1997), and select the critical WS-s, i.e. the
WS with highest workload for every optimal
assignment of tasks. • Phase 2: Analyze the critical WS (i.e., construct
the detailed model of each critical WS, use
parametric model checking to get enhanced
estimates of the WS time), and adjust the cycle
time of given assembly line (Vain, et al., 2002).

There are three possible outcomes of a current search
step:
1. The solution of phase 1 is optimal, i.e., at given

task times detailed model does not provide any
reduction of the critical WS time and thus the
cycle time cannot be reduced.

2. The critical WS time estimate calculated in
phase 2 is less than the rough estimate
calculated in phase 1. That allows to reduce the
cycle time.

3. The critical WS time estimate calculated in
phase 2 exceeds that of phase 1, i.e., the task
assignment found in phase 1 is infeasible
because of violating the cycle time requirement.

In the first case the procedure terminates.
In the second case: if after adjustment the critical WS
time it turns to be less than other WS times then the
phase 2 has to be repeated with those WS-s. If not,
the cycle time can be reduced to adjusted critical WS
time and the procedure stops.
In the third case the task times have to be corrected,
and both phases repeated with new task time
estimates.
It is obvious that if the task time estimates are robust
enough then the procedure converges after repeating
the phase 2 maximally n times (n – the number of
workstations).

Technically the decision procedure of phase 1 is
implemented using a bi-directional branch and
bound procedure SALOME under general
assumptions (Scholl and Klein, 1996). The solution
of SALBP consists of minimal number of WS-s,
assignment of tasks to WS, minimal balance delay
time, and minimal cycle time (for given minimal
number of WS-s).
The MC problem of phase 2 is stated as follows:
check if the WS time is less or equal to the given
cycle time, provided the task assignments and refined
constraints on task execution (including capabilities
of WS machines) are given. Possible reduction of
cycle time is based on more accurate WS model and
its specialised/rational structure. The used model of
critical WS is based on the precedence graph of
operations, operation times, and synchronization
constraints between concurrent tasks. An operation
represents a subtask or its component down to the
elementary activity of a processing machine. For
instance, the WS operations can be performed by
more than one machine (WS can handle more than
one operation at a time), the processing rate may
depend on the number of tasks assigned to the
station, splitting of tasks may be allowed (in the case
of partially ordered tasks), etc. Also, the used models
of assembly lines are deterministic in the sense that
processing times are supposed to be fixed. In fact,
introduction of non-determinism into low level
automata models is trivial and thus the approach can
be extended to interval parameter valuation
functions.

3. CONSTRUCTING THE TIMED AUTOMATA
MODELS

The construction of timed automata which represent
refined models of workstations is a most laborious
step of the phase 2. In this section the model
templates are defined that facilitate the modeling
process. The model checking is supported by
UPPAAL MC tool (Larsen, et al., 1997). The usage
of a timed modal logic-based property specification
language TCTL is described in section 4.
The WS model is given in terms of machine
operations. The set of WS operations is performed by
WS machines. A WS machine must manage similar
operations of several tasks. Involved configuration
constraints, detailed assumptions about operation
times, their timing, ordering and cost are taken into
consideration. The fragment of precedence graph Gi ⊆ G of tasks that are allocated to a workstation wsi is
decomposed into a set of synchronized sequential
processes Pi = ||j P

i
j. The constraints coming from the

machine configuration of given workstation are
represented by parallel composition of machine
models Mi = ||k Mi

k and operation level scheduling
constraints (if any) are encoded in planner automaton
Ai. The workstation model to be analyzed by model
checking is then MMMM

i = Pi || Mi || Ai and the operation-

level workstation model constructing process can be
described by individual components of MMMM

i.

3.1. Timed automata

The models MMMM i belong to the class of timed

transition systems that are syntactically described by
networks of timed automata (Alur and Dill, 1994). A
timed automaton is a finite state automaton extended
with a finite collection of real-valued clocks C
ranged over x, y etc. Let Act be a finite set of actions
and BBBB (C) the clock constraints that can be an atomic
constraint of the form: x ∼ n or x – y ∼ n for x, y ∈ C, ∼ ∈ {≤, ≥,<, >} (n ∈ N) or a conjunction of such
formulas.

Definition. A timed automaton (TA) A over
actions Act, atomic proposition Θ and clocks C is a
tuple 〈N, l0, E, V〉. N is a finite set of nodes (control
nodes), l0 is the initial node, E ⊆ N × B (C) × Act × 2C × N corresponds to the set of edges, and V: N → 2Θ is
a proposition assignment function. In the case 〈l, g, a,
r, l'〉 ∈ E, it is written, l→g,a,r l '.

The semantics of a timed automaton is given in

terms of real valued clock assignments. A clock
assignment u for C is a function u: C → R. Let RC
denotes the set of clock assignments for C. For u ∈
RC, x ∈ C and d ∈ R, u + d denotes the time
assignment which maps each clock x in C to the
value u(x) + d. For C' ⊆ C, [C' → 0]u denotes the
assignment for C which maps each clock in C' to the
value 0 and agrees with u over C\C'. A state of an
automaton A is a pair (l, u) where l is a node of A and
u a clock assignment for C. The initial state of A is
(l0, u0) where u0 is the initial clock assignment
mapping all clocks in C to 0. The semantics of A is
given by the timed transition system SA = 〈S, σ0, →,
V〉, where S is the set of states of A, σ0 is the initial
state (l0, u0), → is the transition relation defined as
follows:

- (l, u) →a (l', u') if there exist r, g such that
l →g,a,r l ', g(u) and u' = [r → 0]u;

- (l, u) →ε(d) (l', u') if (l = l'), u' = u + d,
and V is extended to S by V(l, u) = V(l).

Finally, for a pair of timed automata A and B and
synchronization function f, the parallel composition
A| | f B denotes the timed transition systems SA || f SB.

3.2 Defining linear processes Pi

To transform the precedence graph Gi of tasks to
a composition of timed automata we consider two
transformations of ordering relation Rk ∈ PPPP (R):
isomorphic (denoted by PG�iso TA) and partial order
reduced (denoted by PG�por TA) transformations.

Transformation PG�iso TA. We call the

transformation PG�iso TA isomorphic w.r.t. Rk if in

TA-representation the ordering of tasks given by Rk is
preserved completely. This transformation is
appropriate when all possible task execution
sequences, allowed by R, should be preserved in the
operation-level model. This is the case when
equivalent in line-level task sequences may have
important differences in later design phases, e.g.,
when order dependent features appear to be of design
concern.

The transformation PG�iso TA is accomplished in
following steps:

(i) Sequencing of tasks assigned to the
workstation wsi. The goal of this step is to define a
set of sequential processes Pi, that consist of totally
ordered sequences of local tasks Ti. Each process Pi

j ∈Pi is defined by a subset of relations Rj ⊆ R, where
R j = {〈Tk,Tl〉 ∈ R: Tk,Tl ∈ Ti ∧ ∀〈Tk,Tr〉 ∈ Rj ⇒ Tr =
Tl}. The problem of finding sequential processes Pi
on Rk can be stated as a digraph analysis problem on
local precedence graph Gk: "Find the minimal set of
paths in Gk so that each node Tk

j ∈ Tk is lying exactly
on one path". By adding auxiliary arcs and nodes to
Gk, the solving of this problem is reducible to the
recursive search of Hamiltonian cycles. This is
generally NP-complete problem and applicable in
practice only when the number of partially ordered
tasks is small.

(ii) Constructing timed automata of processes
Pi. Each process Pi

j ∈ Pi is modeled by a timed
automaton TA i

j, using following steps (the indexes of
workstations and processes are omitted for tasks and
corresponding to them elements of TA-models when
it is understood from the context): • define a local clock cl, that simulates the

execution times of tasks Tk ∈ T(Pi
j); • for each task Tk ∈T(Pi

j) define a state sk with
state invariant Inv(sk) ≡ cl ≤ dk; • for each local state sk introduce an auxiliary
state s'k so that the whole set of states
SSSS(TA i

j) = ∪k (sk ∪ s'k); • for each pair 〈Tk,Tl〉 ∈ Ri
j two transitions

(sk, s'k) and (s'k, sl) are introduced; • transitions (sk, s'k) are supplied with clock
guards G (sk, s'k) ≡ cl = dk and transitions
(s'k, sl) with clock resets Asgn(s'k, sl) ≡ cl:= 0.

(iii) Modeling interprocess precedence
constraints. The arcs of precedence graph Gk
connecting tasks of different processes constitute the
set of interprocess synchronization constraints. For
each pair 〈Tp,Tr〉 ∈ R\(∪j R

i
j), where Tp ∈ Ti

k and Tr ∈
Ti

l, we define a global Boolean variable lpr; supply
the transition (sp,s'p) of TA i

k with assignment lpr :=
true; extend the guard G (so,sr) with conjunct lpr =
true; and add an assignment lpr:= false to the reset
function Asgn(so,sr).

(iv) Modeling "no waiting time"-assumption
between task executions. There is no time delay
between executions of tasks within a workstation wsk.
To model this assumption we extend the descriptions

of all auxiliary states s'k and transitions from and to
s'k as follows: • Define a clock invariant Inv(s'k) ≡ cl ≤ gcd,

where gcd is a greatest common divisor of
constants occurring in clock conditions of
the TA i; • Add the guard G (s'k, s'k) ≡ cl = gcd, and
reset function Asgn(s'k,s'k) ≡ cl:= 0 • Extend the guard G (s'k, sl) with conjunct cl =
gcd; • Extend the reset function Asgn(sk,s'k) with
assignment cl := 0.

(v) Modeling non-deterministic choice between
partially ordered tasks. Parallel composition of finite
automata (according to the interleaving semantics)
models partial order between states (transitions) of
automata in untimed case. In case of timed automata
the pure parallel composition is not sufficient for
avoiding simultaneous time progress in processes. To
guarantee that tasks are executed strictly one after
other, we should ensure the mutual exclusion
between processes. Critical sections are unprimed
states Su of TA i

k. Mutual exclusion is implemented as
follows: • Introduce a global Boolean variable lock ; • Extend the guards of all transitions from

primed to unprimed states (s'k, sl) with
conjunct lock = true; • Extend the reset functions of all transitions
from unprimed to primed states (sl,s'l) with
assignment lock := false.

As it is shown in case of Fischer's mutual exclusion
protocol (Kristoffersen, et al., 1997), the modeling of
mutually exclusive non-deterministic behaviors is
computationally very expensive and analysis of
systems with more than 10 processes is practically
undecidable by ordinary non-compositional methods.

Transformation PG�por TA. As an alternative to
computationally hard PG�iso TA transformation we
introduce the partial order reduced (POR)
transformation PG�por TA that provides instead of a
(possibly large) set of synchronized parallel
processes a single totally ordered sequence of tasks.
The idea of the transformation is following: the task
precedence graph fragment Gk defines a set of task
execution sequences, where some sequences differ
only by the order of partially ordered tasks. Since the
execution times of tasks do not depend (by
assumption) on the order of tasks, the total execution
times of sequences are equal. We call such sequences
partial order equivalent sequences and the whole set
of partial order equivalent sequences partial order
equivalence class.
By choosing an arbitrary sequence from the
equivalence class, we get the sequence that
represents the properties of the whole class. Applying
this reduction procedure recursively on the set of
representative sequences, we end up with a single
sequence P*, that represents the whole precedence
graph fragment Gk.

The POR approach is appropriate when the further
design refinements do not need comparative
exploration of all possible task sequences, i.e., the
partial order equivalence relation is invariant w.r.t.
applied design refinements. The PG�por TA
transformation can be easily implemented using
topological sorting algorithm TOPSORT (Reingold,
et al., 1997) having time complexity O(|Tk| + |E|),
where |Tk| is number of nodes (tasks), and E number
of edges of Gk.
The PG�por TA transformation has several
advantages over the transformation PG�iso TA:
1. The step (i) being at least NP-complete is

replaced by fast O(|Tk| + |E|) algorithm;
2. The step (iii) is omitted because there is no

inter-process ordering constraints;
3. The constraint of step (iv) "no waiting time

between executions" is trivially satisfied since
all primed states can be defined now as
committed states and all transitions from and to
unprimed states will be synchronized with
clock constrained transitions of machine
automata Mi (see step (iii)).

4. The step (v) is omitted since POR procedure
eliminates non-deterministic choices between
partially ordered tasks.

5. The arbiter automaton can be omitted since the
fixed order of P* does not leave the room for
alternative selection strategies such as bounded
fairness, dynamic priorities etc. that are natural
for cyclic non-deterministic processes.

3.3 Constructing machine models Mi

As a rule, operation-level models refine the line-level
modeling assumptions. A WS model represents a set
of machines with operations that are subject to
configuration constraints, detailed assumptions about
operation times, their timing, ordering and cost. By
the workstation's wsi configuration model Mi we
mean the composition of machine models Mi = ||l Ml
where each machine performs its operations
sequentially and machines are synchronized through
processes Pi.
(i) Operation models. A machine M l is characterized
by a set of its operations Opl and operational modes
M l. The attributes of an operation opj ∈ Opl may be
priority, cost, time, pre-, post-condition etc. For
simplicity we consider only execution time and cost
further. To construct a machine model Ml we define: • a set of states SSSS(Ml) = {sj: j = [1,|Opl|]} ∪

{ sidle} s.t. for each operation opj ∈ Opl there
is a state sj; the state sidle is a special state
that models the idle state of the machine Ml; • a set of transitions TTTT (Ml)=∪l=[1,|Opl|]{(sj, sidle),
(sidle, sj)}; • the duration dj of operation opj is modeled
using the state invariant Inv(sj) ≡ cl ≤ dj and
the guard G (sj, sidle) ≡ cl = dj, where cl is a
clock variable of the machine model Ml;

• the cost of operation opj is modeled as an
assignement Asgn(sidle, sj) ≡ a_cost := a_cost
+ Cost(opj), where a_cost denotes the
accumulated cost of performing the
operation opj. Alternatively a_cost may
model common cost for all operations of the
machine or even of the workstation. If the
accumulated cost is limited by some value
Limit, it is represented as an operation guard
G (sidle, sj) ≡ (a_cost + Cost(opj)) < Limit.

(ii) Operational modes. Operations of a machine Ml
are grouped into modes M l. Being in the mode M l

k ∈
M l the machine is able to perform only operations opi ∈ M l

k. To perform an operation opj ∉ M l
k the

machine should switch over to the mode M l
r where

opj ∈ M l
r. Switching takes time and has a cost and

may be constrained so that only specified switching
sequences are legal. That needs extension of machine
model Ml by introducing a mode switching fragment.
Assume that each k-th mode M l

k is modeled
separately as described in (i) above and has its idle
state sk

idle. Then the mode switching fragment
consists of a set of transitions between the idle states
sk

idle and states modeling switching operations exactly
in the same way as any other machining operations
(see step (i) above).

(iii) Synchronizing processes and machine
operations. The workstation processes Pi define the
ordering of tasks. Each task can be implemented as a
sequence of operations. The process Planner Ai
makes planning choosing appropriate operation
sequences to execute the task on the given
workstation configuration. Machine operations define
the proper timing of operation sequences. Therefore,
to model the cooperative behavior of these three
parties (processes, planner, machines), initiations and
terminations of tasks, operation sequences and
individual operations must be synchronized.
Synchronization is modeled using two types of
channels: start and stop. Channel start synchronizes
initiation and channel stop synchronizes completing
the task and operation executions in the process, task
and machine models. Start channels are directed
from process models to task models and further from
task models to machine models. Stop channels, on
the contrary, are directed from machine to task and
from task to process models.

4. ANALYSIS BY MODEL CHECKING

The problem of estimating workstation time ti

ws can
be formulated now as a model checking problem on
TA-model: M |= ϕ, where ϕ denotes the behavioral
property to be checked and M the model representing
the behavior to be checked. Finding parameter values
using model checking is generally called a parametric
model checking.
The properties that the model must satisfy are given
in timed modal logic LLLL ssss studied in (Alur and Dill,

1994) and used currently in the verifier of
UPPAAL2k. The BNF-grammar of LLLL ssss: ϕ ::= A� Ps | E◊ Ps | E� Ps | A◊ Ps

Ps ::= AP | ¬ Ps | (Ps) | Ps ∨ Ps | Ps ∧ Ps | Ps ⇒ Ps
AP ::= Id1.Id2 | CGuard | IGuard
CGuard ::= Id ∼ n | Id ∼ Id | Id ∼ Id + n | Id ∼ Id –
n, where n∈ N
IGuard ::= IExpr ∼ IExpr | IExpr ≠ IExpr
IExpr ::= Id | Id[IExpr] | n | -IExpr | (IExpr) |
IExpr Op IExpr ∼ ::= < | ≤ | ≥ | > | =
Op ::= + | - | * | /,

where Ps is a state formula, AP- atomic state
formula, CGuard and IGuard are the guards over
clocks and integer variables respectively, Id identifier
name; Id1.Id2 – an identifier in the form "automaton
name.state name", n - natural number (including 0),
and temporal modalities: A - always; E – sometimes; � - globally; ◊ - eventually.

For example, the formula A � (v1 < v2) says that
invariantly v1 < v2 holds and the formula E◊(A1.si ∧
A2.si) is true iff the system can reach a global state
where both automata A1 and A2 are in their states si.
The tasks to be solved by MC in the context of line
balancing problems are related to time estimates but
may consider other model parameters such as
production deadlines, store capacity, lot size, etc. All
these problems can be stated formally as parametric
constraint solving tasks. Specifying global
constraints by the formula ϕ to be checked and local
to some i-th component (operation, task, workstation)
constraints as transition guards or assignment
conditions of that component's model Ai, we
transform the problem into a standard model
checking problem …||Ai||…|= ϕ, where …||Ai||…
denotes the composition of models including the
model Ai where the constraints are encoded.
Time estimates needed for LB are expressed
generally as bounded liveness properties meaning
that being in some specified state si there exists a
path in the model reaching the state sj within t time
units. Bounded liveness properties can be expressed
formally as safety properties and checked efficiently
using, e.g., the technique of test automata (Larsen et.
al., 1997). For instance, the line-level WS time
estimate tws can be checked in operation-level model
by an auxiliary automaton Stop_watch. The
automaton Stop_watch is constructed so that it takes
transition to state Time_out if tasks allocated to the
WS are not completed within the time period tws. The
MC task to be solved now is: M M M M i |= E ◊ (Stop_watch.
time_out). If this property is satisfied then the
operation-level estimate of tws exceeds the value used
in line-level model. The actual operation-level
estimate of tws can be reached by varying the
time_out parameter of Stop_watch automaton.

5. FINE-GRAIN MODELING EXAMPLE

The proposed approach is tested using representative
open test data set for SALB problems (Scholl and
Klein, 1996).
Consider the robotic workstation, which is described
in (Vain et. al., 2002) as a WS of a flexible assembly
line. It picks up, checks, adjusts, and assembles two
details. The WS time is found to be critical, and must
be checked in detail. The WS processes the following
precedence of subtasks. The loading machine takes a
blank (type 1 or type 2) from the main conveyor and
puts it on the Conveyor1 (task 1, subtask 1, 12s). The
Conveyor1 transports the blank to the robot Mentor
(task 1, subtask 2, 3s) that picks it from Conveyor 1,
and places to (local) Conveyor 2 (task 1, subtask 3,
5s). On the Conveyor 2 by the aid of robot Serpent
the blank is measured, classified, and positioned (task
2, subtask 1, 13s) where the CNC Finishing Mill
works it into the finished part (task 2, subtask 2, 40s).
After completion of subtask 2 the robot Serpent
removes the processed item from finishing and places
it into a box (task 2, subtask 3, 17s) that is positioned
under Serpent by the Index table. Similar sequence of
subtasks is completed with the blank of another type.
The Mentor picks different details from boxes and
positions them (task 3, subtasks 1,2, 20s). Finally, the
details are assembled by an Assembling unit (task 3,
subtask 3, 40s). The results of checking show that it
is possible to reduce the WS time (and the cycle time
of the whole assembly line) from 280 sec to 259 sec.

6. CONCLUSION

In this paper an algorithm is proposed which is

aimed at reduction of the cycle time of (possibly
flexible) assembly lines. The algorithm is based on a
repetitive two-phase solution of a line balancing
problem, allocating the tasks between workstations at
current time step in an optimal way. It combines the
advantages of branch-and-bound algorithms efficient
on the level of coarse-grain task precedence models
and, on the other hand, model checking methods that
allow fine grain analysis in the presence of different
operational and timing constraints. Traditional
drawback of the model checking – exponential
complexity growth in the number of parallel
components of the model – is avoided by solving
subtasks in isolation and considering only local to a
workstation information. Critical aspect in applying
the method is constructing detailed operational
models that requires experience and time. It is shown
that detailed model construction can be enhanced
using a small set of well-defined model construction
and problem specification rules.

ACKNOWLEDGEMENTS

This work is supported by the Estonian Science
Foundation under grants 5086 and 5775.

REFERENCES

Alur, R., D. Dill (1994), Automata for modeling

Real-Time Systems. Theoretical Computer
Science. 126, 183-236.

Clarke, E.M., O. Grumberg and D.A. Peled (1999).
Model Checking. The MIT Press.

Hoffmann, T.R. (1992). EUREKA: A hybrid System
for Assembly Line Balancing. Management
Science, 38, 39-47.

Hopp, Wallace J.and Mark L. Spearman. Factory
physics. Foundations of Manufacturing
Management. Irwin/McGraw-Hill.

Kristoffersen, K.J., F. Laroussinie, K.G. Larsen, P.
Pettersson, W. Yi (1997). A Compositional
Proof of a Real-Time Mutual Exclusion
Protocol. In: Proceedings of the 7/th/
International Joint Conference on the Theory
and Practice of Software Development. (Michel
Bidoit and Max Dauchet, (Ed)), 565-579.
Lille.France.

 Larsen, K., P. Pettersson, W. Yi (1997), UPPAAL in
a Nutschell. Int. Journal on Software Tools for
Technology Transfer 1, 134-152.

Lindahl, M., P. Pettersson, W. Yi (1998). Formal
Design and Analysis of a Gear Controller.
Lecture Notes in Computer Science 1384, 281-
297.

Reingold, M., J. Nievergelt and N. Deo. (Ed). (1977)
Combinatorial Algorithms: theory and practice.
Prentice Hall, Englewood Cliffs.

Scholl, A., R. Klein (1996). Assembly line balancing.
Technical University of Darmstadt,
http://www.bwl.tu-
darmstadt.de/bwl3/forsch/projekte , Darmstadt.

Scholl, A., R. Klein (1997). SALOME: A
Bidirectional Branch and Bound Procedure for
Assembly Line Balancig. INFORMS Journal on
Computing 9, 319-334.

Scholl, A. (1999) Balancing and Sequencing of
Assembly Lines. 2nd edition
<http://www.wiwi.uni-
jena.de/Entscheidung/bucher2.htm>, Physica-
Verlag, Heidelberg.

Vain,J. and R.Küttner (2001). Model Checking - a
New Challenge for Design of Complex
Computer-Controlled Systems. In: Proc. of 5-th
International Conference on Engineering
Design and Automation. (H.R.Parsaei et al eds.).
593-598, CD-ROM, CRC Press, Inc., USA.

Vain, J., I. Randvee, T. Riismaa, and J. Ernits (2002).
Solving line balancing problems with model
checking, Proceedings of Estonian Academy of
Sciences. Engineering 8, 211-222.

