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Abstract: In many control applications, it is expected that the system output
tracks a desired reference signal. This paper describes a new approach in which
the tracking problem is formulated as an output shaping problem. The approach
uses the framework of predictive control and imposes the desired reference signal
as a constraint on the output. Some simulation results are also given to illustrate
the effectiveness of the proposed method. Copyright c©2005 IFAC
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1. INTRODUCTION

The aim of many control problems is that the
system output tracks a desired reference signal.
In classical control, this aim is tried to achieve by
using time domain specifications such as settling
time, maximum overshoot and steady-state error.
In optimal control, this is tried to achieve by
minimizing the error between the desired reference
signal and the system output. In these designs,
there is always a tracking error.

Predictive control methods are based on predic-
tion of the system output and minimization of a
quadratic cost function of the error between the
predicted output and the desired output (Clarke
et al., 1987; Demircioğlu and Gawthrop, 1991;
Demircioğlu and Clarke, 1992; Camacho, 1999).
In some recent works, it has been seen that the
output constraints could be taken into account
and satisfied exactly (Scokaert and Clarke, 1994;
Scokaert and Mayne, 1998; Demircioğlu, 1999).

In this study, we propose a very different ap-
proach. The desired reference signal is used as a
constraint on the output and the control problem

is solved subject to this constraint. This method
also aims at minimizing the predicted control
energy that satisfies the output constraint. The
proposed approach can be considered as output
shaping problem. This approach is very useful as
it allows us to shape the system output as desired.

Predictive control constitutes a suitable frame-
work for the solution of the output shaping prob-
lem. In this work, a continuous-time approach is
adopted and the continuous-time predictive con-
trol framework (Demircioğlu, 1999) is utilized for
the solution.

2. A BRIEF REVIEW OF OUTPUT
PREDICTION

Consider the following continuous-time model:

A(s)Y (s) = B(s)U(s) + C(s)V (s) (1)

where Y (s), U(s) and V (s) are the system output,
control input and disturbance input respectively.
A(s), B(s) and C(s) are polynomials in Laplace



operator s. The design polynomial C(s) is stable
with a degree of 1 less or equal to that of A(s).

In continuous-time predictive control, the output
is predicted by using truncated Taylor series

ŷ(t + T ) =
Ny∑

k=0

yk(t)
T k

k!
(2)

where Ny is the predictor order, T is the future
time variable and

yk(t) =
dky(t)
dtk

(3)

Since taking the derivatives of the system output
is not feasible, instead of the output derivatives
the emulated values are used in equation 2. By
substituting the emulated values in equation 2
and rearranging in matrix form, the T -ahead
output predictor is obtained as (Demircioğlu and
Gawthrop, 1991):

y∗(t + T ) = TNyHu + TNyY
o (4)

where

TNy =
[

1 T
T 2

2
· · · TNy

Ny!

]
(5)

H =




h0 0 · · · 0
h1 h0 · · · 0
h2 h1 · · · 0
...

...
. . .

...
· · · · · h0

· · · · · h1

...
... · · · ...

hNy hNy−1 · · · h(Ny−Nu)




(6)

u =
[
u(t) u1(t) u2(t) · · · uNu(t)

]T (7)

Yo =
[
yo
0(t) yo

1(t) yo
2(t) · · · yo

Ny
(t)

]T
(8)

where uk(t) is the kth derivative of the input, Nu

is the control order and the elements of the H
matrix are the Markov parameters of the open-
loop system B(s)/A(s), yo

k(t) is realizable part of
the emulated value of kth derivative of the output.
The emulated value y∗k(t) of the kth derivative of
the output is given in Laplace domain by

Y ∗
k (s) = Hk(s)U(s) + Y o

k (s) (9)

and the realizable part yo
k(t) is,

Y o
k (s) =

Gk(s)
C(s)

U(s) +
Fk(s)
C(s)

Y (s) (10)

and the polynomials Hk(s), Gk(s) and Fk(s) are
obtained from the identities:

skC(s)
A(s)

= Ek(s) +
Fk(s)
A(s)

(11)

Ek(s)B(s)
C(s)

= Hk(s) +
Gk(s)
C(s)

3. OUTPUT SHAPING BY MEANS OF
OUTPUT CONSTRAINTS

Output constraints can be used to shape the
system output as desired. In other words, the
desired shape of the output function can be im-
posed on the control problem as output con-
straints. In constrained predictive control, output
constraints are written in terms of predicted out-
put (Demircioğlu, 1999). Let ymin and ymax de-
notes the lower and upper constraining functions
(shaping functions) then we could write:

ymin(t + T ) ≤ y∗(t + T ) ≤ ymax(t + T ) (12)

where T1 ≤ T ≤ TN , where T1 and TN are lower
and upper constraint horizons respectively. By
the proper choice of the constraining functions
ymin and ymax, the output can be shaped as
desired. ymin and ymax may, for example, defines
a certain band around a desired function. In this
case the output will follow the desired function
staying within the band defined by ymin and
ymax. By narrowing this band a tighter tracking
performance can be obtained. If an exact tracking
or shaping is desired then this band can be set
equal to zero, that is ymin and ymax will be the
same functions.

Since the constraints are applied on predicted
future output, the future values of the signals
ymin(t) and ymax(t) must be known. However,
in some control applications future values of the
constraining functions may not be known. For
these applications, the limits may be assumed as
constant and equal to the value at time t in the
interval [T1, TN ].

ymin(t) ≤ y∗(t + T ) ≤ ymax(t) (13)

The upper and lower limits are still functions of
time, so the output shaping can still be obtained
by using this assumption. In this study, the future
values of the constraining functions are assumed
to be known.

By using equation 4, inequality 12 can be ex-
pressed as a single matrix inequality as follows:

Qy(T )u ≤ py(t, T ) (14)

where

Qy(T ) =
[

TNy

−TNy

]
H (15)



py(t, T ) =
[

ymax(t + T )−TNy
yo

−ymin(t + T ) + TNyy
o

]
(16)

The inequality 14 must hold for any value T , say
Ti, over the interval [T1, TN ] and the number of
Ti values in this interval are obviously infinite. It
may be assumed that the inequality 14 holds over
the entire interval [T1, TN ], if it holds at a finite
number of Ti values, provided that Ti values are
chosen close enough to each other. In this interval,
if N number of Ti values are chosen, we then have

Qy(Ti)u ≤ py(t, Ti) (17)

where Ti’s are time instants and i = 1, 2, . . . , N .

These N number of inequalities can be rearranged
as a single matrix inequality as follows:

Qyu ≤ py (18)

where

Qy =




Qy(T1)
Qy(T2)

...
Qy(TN )


 , py =




py(t, T1)
py(t, T2)

...
py(t, TN )


 (19)

4. CONTROL LAW

The control problem is to find a control signal
which minimizes the predicted control energy and
satisfies the output shaping constraints. The pre-
dicted control energy is obtained by using the pre-
dicted future input. At time t, the predicted future
input can be written as the truncated Taylor series
expansion.

u∗(t + T ) = TNuu (20)

where

TNu =
[

1 T
T 2

2
· · · TNu

Nu!

]
(21)

For the time interval [0, Tc], the predicted control
energy can be calculated as:

E =

Tc∫

0

u∗T (t + T )u∗(t + T )dT (22)

= uT Tuu

where

Tu =

Tc∫

0

TT
Nu

TNudT (23)

and Tc is called control horizon. Equation 22 is
a quadratic function that includes input and its
derivatives.

As a result, the output shaping control problem
can be defined as:

Minimize E = uT Tuu (24)

Subject to Qyu ≤ py

This is a QP (quadratic programming) problem.
There exists algorithms to solve this problem
(Fletcher, 1987; Bett, 2001). The first element,
u(t), of the vector u obtained from the solution
of the QP problem is applied to the system as
receding horizon strategy.

5. SIMULATIONS

This section presents some simulation results
which illustrate the output shaping by means of
output constraints in continuous-time predictive
control. In all examples, the aim is to keep the
output within the band defined by the shaping
(constraining) functions. The shaping functions
are chosen as a combination of linear, exponen-
tial and sinusoidal functions in order to include
different forms of signals encountered in practice,
although it is not necessary the lower and upper
shaping functions are chosen to have the same
form. In figures the upper graph shows the system
output, y(t) (solid), and the upper and the lower
shaping functions, ymax(t) and ymin(t) (dashed),
the lower graph shows the control input, u(t). In
simulations, sampling interval is 0.05 sec.

5.1 Example 1

A double integrator is chosen as a first example.

B(s)
A(s)

=
1
s2

(25)

Simulation result is obtained by using the follow-
ing control parameters.

ymax(t)− ymin(t) = 0.5 (26)

C(s) = s + 1

Ny = 3

Nu = 1

Tc = 1

Ti = 0.05i, i = 1, 2, . . . , 20

The number of constraint inequalities is 20 at
each sampling instant. The result is given in
figure 1. As seen from the figure, the output
remains within the band defined by the shaping
functions ymin and ymax. Narrowing this band
makes the constraints more stringent, and as a
result the system output becomes more similar to
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Fig. 1. Control of example 1 (ymax − ymin = 0.5)
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Fig. 2. Control of example 1 (ymax − ymin = 0.2)
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Fig. 3. Control of example 1 (ymax−ymin = 0.08)

the shaping functions. As this band approaches
zero, the form of the system output approaches to
the form of shaping functions. Simulation results
illustrating this are given in figures 2 and 3. In
figures 2 and 3, the difference between ymax and
ymin is 0.2 and 0.08 respectively and the other
control parameters are the same as before. As
seen from the figures, the output is shaped more
effective.
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Fig. 4. Control of example 2 (ymax − ymin = 0.2)

5.2 Example 2

Second example is an double oscillator.

B(s)
A(s)

=
1

(s2 + 1)(1.5s2 + 1)
(27)

Simulation result is obtained by using the fol-
lowing control parameters for this more complex
system.

ymax(t)− ymin(t) = 0.2 (28)

C(s) = s4 + 2s3 + 4s2 + 2s + 1

Ny = 20

Nu = 5

Tc = 4

Ti = 0.2i, i = 1, 2, . . . , 20

The result is given in figure 4. As seen from the
figure, although the system output oscillates as a
result of the complexity of the system, the sys-
tem output satisfies the output constraints. Note
that rapid changes in shaping functions cause the
control signal became more active. This is an
expected result. It is clear that the control activity
can be reduced by relaxing the constraints.

Because the system is more complex, the upper
constraint horizon is now chosen as 4. This is
larger than that of the previous example but the
number of inequalities are still 20 at each sampling
instant. The difference between the maximum and
minimum shaping functions is 0.2. When this
difference is reduced to 0.1, the simulation result
in figure 5 is obtained. As seen from the figure,
the shape of the system output is very close to the
desired shape. However, this causes very effective
control signal.

Although reducing the difference between the lim-
its may cause much more stringent constraints,
the system output can be shaped more effective.



0 5 10 15 20 25 30 35 40
−0.5

0

0.5

1

1.5

2

2.5

3
y

0 5 10 15 20 25 30 35 40
−200

−100

0

100

200
u

Fig. 5. Control of example 2 (ymax − ymin = 0.1)
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Fig. 6. Control of example 3

5.3 Example 3

An unstable system is considered in this example.

B(s)
A(s)

=
1

s2 − 1
(29)

The system is simulated with the following design
parameters.

ymax(t)− ymin(t) = 0.08 (30)

C(s) = s + 1

Ny = 3

Nu = 0

Tc = 1

Ti = 0.05i, i = 1, 2, . . . , 20

The result is given in figure 6. As seen from the fig-
ure, the output remains between the constraining
functions. The system output is shaped as desired.

6. CONCLUSIONS

This paper shows that output tracking problem
can be formulated as output shaping problem by

imposing the desired trajectory as constraint on
the output. The predictive control constitutes a
suitable framework for the solution of the prob-
lem. Effectiveness of the method is illustrated
by the simulations using a double integrator, a
double oscillator and a unstable system. In these
different examples, the output is shown to remain
within the band defined by the shaping functions
(constraining functions). In short, the output can
be forced to have any desired shape by chosen
proper shaping functions.
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