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Abstract: This paper presents a new motion planning algorithm for wheeled
mobile robots in presence of known static obstacles, especially well-suited for high
velocity situations. It takes into account several conditions traditionally attached
to smooth path planning, i.e. paths with continuous derivative and upper-bounded
curvature. It makes use of a global path planner which exploits polynomial G3

curves characteristics. Copyright c©2005 IFAC
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1. INTRODUCTION

Path planners for wheeled mobile robots (i.e ve-
hicles that ensure non-holonomic kinematic cons-
traints) have been widely developed in the recent
years.

Dubins’ pioneer work (Dubins, 1957) introduced
the first set of paths going from a point to another
in a minimal time (circles and segments). In
this scope (path planning in a free environment),
several extensions of this result have been carried
out. Firstly (Reeds and Shepp, 1990) generalized
Dubins’ result for a forward/backward mobile.
Numerous approaches have been proposed since
then, based on line segments and circles, e.g.
(Jacobs and Canny, 1989), (Simeon et al., 1997),
(Mirtich, 1992).

All these results turned out to be unsatisfactory
when implemented on real wheeled robots, be-
cause of discontinuities on path’s curvature pro-
file during circle-segment transitions. This means
that the steering wheel angle has to change in-

stantaneously whenever a joint is passed, which
is neither physically possible nor desirable. Later
(Sussmann, 1997) solved a modified version of the
Dubins’s Markov problem, in which the control is
angular acceleration rather than angular velocity.
When using the Pontryaguin Maximum Principle
to solve this problem, a first analysis suggests that
the manoeuvres resulting from the solution are
bang-bang trajectories (as it happens in the sim-
ple Dubins’ Problem), and it is reasonable to guess
that these trajectories will have a finite number of
switches. However, it can be proved that optimal
trajectories for this kind of system involve infinite
chattering. In order to avoid this problem, several
works have been developed. They all try to ob-
tain smoother trajectories than those supplied by
Dubins’s curves, while guaranteeing “nearly time-
optimal paths”. For example, (Anisi, 2003) sug-
gests that for generating such nearly time-optimal
paths, an appropriate and cunning choice of the
integral cost function has to be done. For his part,
(Scheuer, 1998) uses the set of optimal curves
described in Sussman’s paper (segments, arcs of



circles and clothoids); he implemented an algo-
rithm based on Dubins’ curves families, modifying
single turns by continuous-curvature (CC) turns
(with the help of those clothoids). However such
a path cause discontinuities in the steering wheel
angular velocity of a vehicle covering the path.
This is why many researches have been carried
out in order to find curves with a higher degree of
smoothness. For instance, (Kanayama and Hart-
man, 1989) showed that using cost functions like
the integral over the curvature’s square or the
integral over the square of curvature derivative,
lead, respectively, concatenations of clothoids, and
concatenation of cubic spirals. Many other sets of
fundamentals curves have been tested:

• Some whose coordinates have a closed ex-
pression: B-splines (Komoriya and K.Tanie,
1989), quintic polynomials (Takahashi et al.,
1989), polar splines (Nelson, 1989).

• Others whose curvature is a function of their
arc length: clothoids (Liscano and Green,
1989), Kanayama & Hartmann curves, in-
trinsic splines (Delingette et al., 1991) or G2-
splines (Piazzi et al., 2002).

As neither completeness nor topological admissi-
bility have been studied in depth, none seemed
to be more interesting than others. Further-
more, works combining smooth path planning
and obstacle-avoiding have so far barely been
developed. Only 1 (Berglund et al., 2003) and
(Scheuer, 1998) have treated this problem, the
first one using an heuristic choice on the curve
family (B-splines), the second one supported by
Sussmann’s results, the latter is closest to opti-
mality.

The main drawback of Scheuer’s result is that
his path’s curvature profile is too constrained for
difficult situations, and that every circle-segment
transition generated by clothoids is not smooth
enough (curvature is not continuously differen-
tiable).

Consequently, a more versatile local path planner
will be proposed (based on results from (Piazzi et
al., 2003)), to use in a similar way as in Scheuer’s
strategy, i.e., embedded in a probabilistic path
planner. It will provide near optimal paths with
smooth curvature profiles and with bounded cur-
vature and curvature derivative.

1.1 Outline of the paper

Section 2 will present the general path plan-
ning problem, introducing the two fundamental

1 Laumond’s publication (Laumond et al., 1994) on Hilare
robot also deals with this problem, but for his case maximal

curvature constraint is not taken into account because the

robot has an unbounded turning radius

algorithms developed for its resolution. First, in
section 3, the G3 quintic splines curves are de-
fined, highlighting their applicability to a smooth
path planning algorithm (in a free environment).
Obstacle-avoiding is treated in section 4, where
the global path planner developed is described.
The final section is dedicated to a comparison
between G3 splines and CC curves and, finally,
to show a path generation application over an
environment with obstacles.

2. THE PATH PLANNING PROBLEM

Given a starting and a goal configuration, the path
planning problem consists in finding a path Γ such
that:

(1) Γ satisfies the extreme conditions (explained
in detail in the local path planner section)

(2) Γ respects local path planner constraints, i.e
kinematic and dynamic vehicle constraints.

(3) Γ is collision-free, i.e. it is entirely included
in the free configuration space.

Among the set of possible solutions, the short-
est path will be chosen. Moreover, as it will be
explained at the end of section 4, if there exists
a solution to the above formulated problem, the
algorithm will find it.

3. LOCAL PATH PLANNER

A curve on the {x, y}-plane can be parameterized
by means of p : [u0, u1] → R

2, u → p(u) =
[x(u), y(u)]T . The curve length measured along
p(u), denoted by s can be expressed as

f : [u0, u1] → [0, f(u)], (1)

u 7→ s =

∫ u

u0

‖ṗ(ξ)‖dξ =

∫ u

u0

√

ẋ(ξ)2 + ẏ(ξ)2dξ

Given a regular curve 2 (ṗ(u) ∈ Cp([u0, u1]),
ṗ(u) 6= 0, ∀u ∈ [u0, u1]), the length function f

is continuous over [u0, u1] and bijective, hence its
inverse is continuous too and will be represented
by f−1 : [0, f(u1)] → [u0, u1], s → u = f−1(s).

An orthonormal moving frame {τ(u), ν(u)} con-
gruent with the axes of plane may be associated
with every point of the curve. The unit tangent
vector of the curve is defined as τ = u̇

‖u̇‖ , and

its derivative with respect to the curve length,
according to Frenet formulae, can be written as
dτ
ds (u) = κc(u)ν(u), u ∈ [u0, u1]. The scalar cur-
vature (κc) may be expressed either as a function
of u:

k(u) =
ẋ(u)ÿ(u) − ẍ(u)ẏ(u)

(ẋ(u)2 + ẏ(u)2)
3/2

, (2)

2 Cp is the class of piecewise continuous functions.



or as a function of the curve length, i.e. κ :
[0, f(u1)] → R, u 7→ κ(s) where κ(s) =
κc(f

−1(s)).

Definition 1. A parametric curve p(u) has first
order geometric continuity (G1) if it verifies:
ṗ(u) ∈ Cp([u0, u1]), ṗ(u) 6= 0, ∀u ∈ [u0, u1] and
τ(·) ∈ C0([u0, u1]).

Definition 2. A parametric curve p(u) has second
order geometric continuity (G2) if it is a G1 curve,
p̈(u) ∈ Cp([u0, u1]) and κc(·) ∈ C0([u0, u1]).

Definition 3. A parametric curve p(u) has third
order geometric continuity (G3) if it is a G2 curve,
...
p(u) ∈ Cp([u0, u1]) and τ̈c(·) ∈ C0([u0, u1]).

Definition 4. A path Γ on the {x, y} plane is a
Gi-path (i=1,2,3) if there exists a parametric Gi-
curve whose image Γ is the given path

Proposition 1. A path Γ on the {x, y} plane is
generated by the unicycle model:











ẋ = v(t) cos θ(t)

ẏ = v(t) sin θ(t)

θ̇ = ω(t)

(3)

with input ω(·) ∈ C1, v(t) = V0, V0 ∈ R
+, ∀t ≥

0, if and only if it is a G3 curve.

A sketch of the proof is as follows. Given any
G3-curve p(u) with u ∈ [u0, u1], the inverse
arc length function s−1 is defined, and it is, by
definition, a continuous function. Moreover, the
scalar curvature derivative σ(u) = dκ

du (u) is as
well continuous over [u0, u1] because p(u) is a G3-
curve. At the initial time t0, consider the state
of model (3) given by [x(u0) y(u0) arg(τ(u0))]

T .
Then, applying the continuous input

ω(t) = vκc

(

s−1 (v (t − t0))
)

(4)

the vehicles motion from t0 to t0 + s(u1)
v exactly

matches the path of the given curve. Moreover, if
κc(u) ∈ C1 and v̇ = 0, then ω(u) ∈ C1.

As it has been said in the introduction, sev-
eral possibilities could have been used in order
to guarantee G3 curve properties (B-splines are
G3 curves; CC curves only guarantee G2 prop-
erties), while approaching time-optimality. Let’s
for instance consider a quintic polynomial curve
p(u) = [x(u), y(u)]T , u ∈ [0, 1], where

x(u) = x0 + x1u + x2u
2 + x3u

3 + x4u
4 + x5u

5

y(u) = y0 + y1u + y2u
2 + y3u

3 + y4u
4 + y5u

5

The problem is then to determine the minimal-
order (and not superior to the fifth order) polyno-
mial curve that interpolates between two points

pA = [xA, yA]
T

and pB = [xB , yB ]
T
, with angles

θA and θB defining its tangent vector, with scalar
curvatures κA and κB , and with derivatives of the
curvature with respect to the arc length θ̇A and
θ̇B . It follows that, for every two points A and B,
the interpolating conditions are the following:

p(0) = pA, τ(0) =

[

cos θA

sin θA

]

, κc(0) = κA,

σc(0) = σA‖ṗ(0)‖ (5)

p(1) = pB , τ(1) =

[

cos θB

sin θB

]

, κc(1) = κB ,

σc(1) = σB‖ṗ(1)‖ (6)

A non degenerate nonlinear system of 12 equa-
tions can be written from the interpolating condi-
tions. As the number of coefficients to find is also
12, a determined solution can be found.

Furthermore, a two dimensional vector η ≡
[η1, η2]

T
is defined with respect to the polynomial

coefficients (xi, yi). Both parameters η1 and η2

allow to reparametrize the curve p(u) as what
is called an η-spline, denoted p(u, η). They are
defined as follows:

η1 := ‖ṗ(0)‖, η2 := ‖ṗ(1)‖

so they may be considered as the velocity param-
eters at the beginning and end of the curve.

Proposition 2. Given any two points and its corre-
sponding data pA, θA, κA, κ̇A and pB , θB, κB ,

κ̇B , the parametric curve p(u, η) satisfies interpo-
lation conditions above (5)-(6) for all η ∈ H. On
the contrary, for any fifth order polynomial curve
p(u) with ṗ(0) 6= 0, ṗ(1) 6= 0 satisfying (5)-(6),
there exists a parameter vector η ∈ H such that
the curve p(u) can be expressed as p(u, η).

The choice of both η1 and η2 is then the last point
to clear up.

It is quite intuitive that with a proper selection of
η it is possible to obtain a large variety of curves,
all of them interpolating the conditions imposed
at the curve extremes. This suggests to choose
both parameters with some sort of optimality cri-
terion. In their work, (Bianco and Piazzi, 2000)
pointed out the advantage of minimizing ‖dκ

ds ‖,
based on the system flatness properties. According
to them, the optimization problem can be formu-
lated as follows

min
η∈H

max
s∈[0,f−1(u)]

∥

∥

∥

∥

dk

ds
(s)

∥

∥

∥

∥

, (7)

where H is the set given by the Cartesian product
R

+ × R
+. This problem formulation, considering

(1), is equivalent to this other constrained minmax
problem:



min
η∈H

max
u∈[0,1]

∥

∥

∥

∥

dk

ds
(u)

∥

∥

∥

∥

‖ṗ(u)‖ > 0 ∀u ∈ [0, 1] (8)

The purpose of such criteria is to minimize, under
reasonable approximations, the absolute value of
the derivative of the curvature with respect to
time. The underlying idea of this choice is to
limit as much as possible the steering speed.
Even though this argument is admissible from
a theoretic point of view, it is not constraining
enough if a minimum turning radius have to
be fulfilled (which is a technological imperative).
This is why this other problem formulation is
preferable:

min
η∈H

max
u∈[0,1]

∥

∥

∥

∥

dk

ds
(u)

∥

∥

∥

∥

(9)

‖ṗ(u)‖ > 0

‖κ(u)‖ ≤ κmax

Since the derivative of the curvature is related
to the steering speed, it is desirable to upper-
bound the first one in order to guarantee such
paths to be tracked within a given speed. In other
words, the covered trajectory by the unicycle
model becomes more realistic (when compared
with a real vehicle) if a constraint | dκ

ds (s)| ≤
σmax is imposed to the reference path. Thus, as
we look for the minimal length trackable path,
the previous problem formulation turn into the
following:

min
η∈H

∫ u

u0

√

ẋ(ξ)2 + ẏ(ξ)2dξ (10)

‖ṗ(u)‖ > 0

‖κ(u)‖ ≤ κmax
∥

∥

∥

∥

dκ

du
(u)

∥

∥

∥

∥

≤ σmax

Remark 1. The solution of the above problems
has been pursued with a nonlinear programming
local technique, the Sequential Quadratic Pro-
gramming. Finding the global minimum of these
functions, if it exists, can then be a difficult prob-
lem. However, a choice that has turned out to
be effective in most cases is to set the initial
conditions according to the following relations:
η1 = η2 = ‖pB − pA‖.

Finally, it has to be pointed out that a parame-
trized curve p(u, η) is, by definition, a G3 curve
and, consequently, a sequence of points interpo-
lated by quintic G3 splines results in an overall G3

curve. Therefore, it only remains to choose prop-
erly those points, but this task will be devolved to
the global path planner.

4. GLOBAL PATH PLANNER

The method proceeds in two steps: the learning
phase and the query phase.

In the first phase, a probabilistic technique will
be used to construct a weighted graph whose
nodes correspond to collision-free configurations,
whose edges correspond to feasible paths between
configurations (only path lengths will be stocked).

The environment exploration is done by suc-
cessively adding a random configuration to the
graph, and by trying to connect this configuration
to a maximum number of nodes of the graph with
the local path planner.

Remark 2. A random configuration is a data set
made up of 5 elements: xi, yi, θi, κi, σi.

The original path planner (Svestka and Over-
mars, 1995) has been slightly modified in order to
achieve a better graph connectivity over compli-
cated access zones. Thus, for a new node c, every
node belonging to the graph whose distance to the
new node is lower than a beforehand fixed distance
dmax, and whose edges are not zero, is added up. If
the resultant value is higher than a heuristic value
nmax, the new node c is not included in the graph
and a new node is generated until it satisfies the
previous condition.

This learning phase can be done as an off-line
treatment because it only depends on the envi-
ronment and not on the query configurations.

In the query phase, any given start and goal
configuration are connected to the two closest
nodes of the graph, using the local planner, and
then a graph search between these two nodes is
performed. This step is realized with the help of
the Dijkstra algorithm (Dijkstra, 1959). As the
aim of the planner is to find the shortest possible
path, graph weight will be the internodal distance
calculated by the local planner.

This planner is, according to the authors, prob-
abilistic complete. This means that any problem
which can be solved using an overall path made
up of several elementary paths (generated by the
local planner) will be solved, provided that the
exploration is carried out for a sufficient amount
of time.

5. SIMULATION RESULTS

First of all, a comparison between different local
path planners is shown in Figures 1 and 2 for
random start and goal configurations. The short-
est path occurs when a low maximal curvature
(kmax = 0.2, which could theoretically be covered
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Fig. 1. Path comparison between Continuous Cur-
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Fig. 2. Curvature profile of previous paths.

by a vehicle running at a speed not higher than
6 ms−1 ) is imposed in Scheuer’s CC algorithm.
When this constraint becomes more stringent, the
path shape looks like those obtained with quintic
splines. However, it can be appreciated in Figure 2
a remarkable difference between curvature profiles
of those paths. While the CC algorithm produces
sheer slope changes in line’s segments-clothoids
or cercle arcs-clothoids transitions, spline curva-
ture appear to be much softer. Moreover, their
curvature have a more versatile structure than
CC curves, which are limited to linear pieces.
A final remark has to be done concerning the
difference between constrained and unconstrained
splines curves. The constrained (kmax = 0.03)
curvature algorithm succeeds for this particular
example, but, in general, it will do it with more
difficulty than unconstrained algorithms. Unfor-
tunately, this is the price to pay in order to find
more easily trackable paths.

Remark 3. Maximum curvature and curvature
derivative values have been obtained for a vehicle
running at v = 15 ms−1. From that data, taking

into account that a maximal lateral acceleration
occurs when tyres saturate (γmax ≈ 0.8g), and
that γ = v2κ, it follows that the maximal curva-
ture value allowed is κmax = 0.03.

Test results of global path planner for an envi-
ronment with obstacles are shown in figures 3
and 4. Let (x = 0, y = 0.8, θ = 0.02, κ =
−0.003, σ = 0.005) be the start configuration and
(x = 29.93, y = 4.51, θ = 0.105, κ = −0.03, σ =
0.004) be the goal configuration, the Quintic G3

path interpolating those two configurations is the
one shown in the figure below. Two families of
points can be observed: those who have been ran-
domly drawn (light points) and those to whom
another configuration belonging to the graph have
managed to be linked (superposed, dark points).
As the local path planner have not found a solu-
tion to the above specified problem, the global
path planner have chosen the most interesting
landmark combination for finding the minimal
length path. An only intermediate landmark has
been found for this particular situation (asterisk).
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Remark 4. Although the optimization problem
posed in (10) is closer to provide the short-
est path guaranteeing the above curvature con-
straints, problem formulated as (9) is much more
efficient in terms of graph connectivity. This is
why the local path planner has been implemented
so as to use (9) solution curves.

6. CONCLUSION

A new obstacle-avoiding path planning strategy
has been presented. The main advantage of this
methodology is, thanks to its versatility, its adapt-
ability to non-holonomic vehicles with nearly con-
stant and high velocities. However, a simple mod-
ification in local path planner conception could
allow to use it also for longitudinal velocity con-
trolled vehicles.
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