
A NEW EVALUATION PLATFORM FOR NAVIGATION
SYSTEMS

Thomas Hanefeld Sejerøe∗ Niels Kjølstad Poulsen∗∗

Ole Ravn∗

∗Ørsted•DTU, Automation,
The Technical University of Denmark,

Building 326, DK-2800 Kgs. Lyngby, Denmark
E-mail:991707@student.dtu.dk, or@oersted.dtu.dk

∗∗ Informatics and Mathematical Modelling,
The Technical University of Denmark,

Building 321, DK-2800 Kgs. Lyngby, Denmark
E-mail:nkp@imm.dtu.dk

Abstract: The KALMTOOL 2 toolbox is a set of MATLAB tools for state estimation for
nonlinear systems. The toolbox contains functions for extended Kalman filtering as well
as for two new filters called the DD1 filter and the DD2 filter. Italso contains function for
Uncented Kalman filters as well as three versions of particlefilters. The toolbox requires
MATLAB ver. 6, but no additional toolboxes are required.Copyright©2005 IFAC

Keywords: State estimation, Kalman filtering, nonlinear systems Autonomous robots

1. INTRODUCTION

In this paper a newly developed platform for evalua-
tion of estimation algorithms, Kalmtool 2, will be de-
scribed. The purpose of the platform is to make eval-
uation of different algorithms for solving nonlinear
state estimation problems and to enable a comparison
with new methods.

During the work it was found that the extended
Kalman filter was somewhat inconvenient to use in
some of our applications. A small modification of the
application sometimes had serious implications on the
EKF implementation. Moreover, it was often difficult
to implement. Our problem was that the EKF requires
a linearization of the system model. Sometimes this
is easy to find but sometimes it can be pretty hard. In
any case, it makes things inflexible. If a small change
is made in the model, one has to work out a new
set of derivatives. This is particularly inconvenient in

model calibration where certain model parameters are
temporarily included in the state vector and estimated
simultaneously with the actual states.

Since it was suggested, the extended Kalman filter
(EKF) has undoubtly been the dominating technique
for nonlinear state estimation. Nevertheless, the EKF
is known to have several drawbacks. These are mainly
due to the Taylor linearization of the nonlinear trans-
formations around the current state estimate. The lin-
earization requires that Jacobians of state transition
and observation equations are derived, which is often
a quite complex task. Moreover, sometimes there are
points in which the Jacobians are not defined. In ad-
dition to the difficulties with implementation, conver-
gence problems are often encountered due to the fact
that the linearized models describe the system poorly.

There have been significant focus on this area recently
and Previous work include several toolboxes and other



platform. ReBEL is a Matlab̋o toolkit of functions
and scripts, designed to facilitate sequential Bayesian
inference (estimation) in general state space models.
The present platform Kalmtool II has its root in Kalm-
tool but focus here is on comparision and transparency
giving the developer more control over the process
of adapting changes and keeping housekeeping code
minimal.

The paper is organized as follows: first overall design
philosophy behind the platform is described. Next
a description of the estimation algorithms are given
including the extended Kalman filter, the Uncented
Kalman filter and different types of particlefilters.
Section 4 gives an extensive example study as well
as a demonastration of the platform for comparing
algortims for navigation of a mobile robot. Finally
conclusions and references are given.

2. THE PLATFORM

The overall design philosophy has been to put focus on
making a simple, transparent, yet powerfull platform
that and makes life easy to use both for application
and algorithm developer.

Transperancy overcomes the barrier effect that is often
expirenced when using tools that at first sight seem
very user friendly but when used on real problems
becomes difficult to handle due to the inherent com-
plexity.

The approach taken uses MATLAB as a numerical
and graphical basis for developing the platform. The
platform is driven from Simulink as this provides
a shorter path to implementation using for instance
Realtime Workshop and makes is simple to use real
data for comparison.
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Fig. 1.The Simulink layout of a continous system.

As seen in the above figures the user can easily
add new algorithm into the platform by modifying
the MATLAB function in the Estimation block and
change the system by modifying the system and mea-
surement MATLAB blocks.
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Fig. 2.The Simulink layout of a discrete time systems

3. ESTIMATION ALGORITHMS

Consider a system in which the evolution of the state
sequence{xk ∈ R

n
, k∈N} is given by

xk+1 = fk(xk,uk,vk) (1)

where fk is a possible nonlinear function of the state,
xk, the input (control) signal,uk and the process noise,
vk. The process noise is assumed to be a sequence
{vk ∈ R

n k ∈ N} of identically independently dis-
tributed stochastic vectors.

The objective is to estimatexk from measurements

yk = gk(xk,ek) ∈ R
m (2)

where alsogk is a possible nonlinear function of the
state and the measurement noise,ek. The measurement
noise is assumed to be a sequence,{ek ∈ R

m k ∈ N},
of i.i.d. stochastic vectors. More specific we seek an
estimate ofxk based on all available measurements
(and known inputs)Y0:k = {(yi ,ui), i = 0, ...,k}.

The solution to this problem is embedded in the con-
ditional degree of belief in the state,xk given the data,
Y0:k. The problem is then (recursively) to determine
the pdf. p(xk|y0:k). If the initial distribution, p(x0),
is known then the solution can in principle be deter-
mined through the recursions:

p(xk|Y0:k−1) =

∫

Ωx

p(xk|xk−1)p(xk−1|Y0:k−1)dxk−1

(3)
and

p(xk|Y0:k) =
p(yk|xk)

p(yk|Y0:k−1)
p(xk|Y0:k−1) (4)

These two recursions are related to the dynamic ((3))
and the inference ((4)) step, respectively and can only
in special cases be solved analytically. In the linear
Gaussian case the pdf. can be parameterized in terms
of mean and variance and the recursions results in
the well known Kalman filter. In that case (the linear
Gaussian case with standard assumptions including
x0 ∈ N(x̂0,P0)) the system is assumed to be given by
the recursions:

xk+1 = Axk +Buk +vk vk ∈Niid (0,R1)

yk = Cxk +ek ek ∈Niid (0,R2)



The Kalman filter is given by the prediction or the time
updates

x̂k+1|k = Ax̂k|k +Buk (5)

Pk+1|k = APk|kA
T +R1 (6)

and the inference recursion

x̂k|k = x̂k|k−1 +Kk(yk− ŷk|k−1) (7)

Pk|k = Pk|k−1−KkCPk|k−1 (8)

where:
Kk = Pk|k−1C

TS−1
k

and

ŷk|k−1 = Xx̂k|k−1 Sk = CPk|k−1C
T +R2

In this case, the prediction in (3) results in (5) and
can also be found as an application of calculus for
linear operations on Gaussian vectors. The inference
recursion in (7) emerge from (4) or as an application
of the Projection Theorem.

In the nonlinear case the various filters differs in the
way the handle the propagation of the distributions
through the two nonlinearities,f andg, and how the
inference is carried out. The next three filters are all
based on the projection Theorem.

3.1 The Extended Kalman filter

The Extended Kalman filter is as its name indicate
based on an extension of the application of the Kalman
filter to the nonlinear case. The Extended Kalman
filter (EKF) is based on a standard Taylor expansion of
the nonlinear functions and can be regarded as a local
approximation. In general the approximation is best
for small deviations from the point of linearization.

The basic idea is related to the problem of determine
the distribution ofz if

z= F(x)

and the distribution ofx is known to beN(x̂,Px). The
approximation is simply to use

z∈ N
(

F(x̂), ĀPxĀ
T)

where

Ā =
∂
∂x

F

∣

∣

∣

∣

x̂

This approximation applies both to the process equa-
tion (and f ) and the measurement equation (andg). In
fact, the only changes with respect to (5)-(8) is

x̂i+1|i = fi(x̂i|i ,ui ,0) ŷi|i = gi(x̂i|i ,0)

The variance update, (6) and (8), are unchanged except
for the (eventually) state dependent system matrices

A =
∂ f
∂x

∣

∣

∣

∣

x̂
C =

∂g
∂x

∣

∣

∣

∣

x̂

3.2 Divided difference filters

The divided difference filter exists in a first order
version (DD1) and in a second order version (DD2)
and is based on Stirlings interpolation formula (see
(Nørgaardet al., 2000) and Figure 3 for illustration).
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Fig. 3. Comparison of a second-order polynomial
approximation obtained with the Taylor (dot-
dashed) and the Stirling method (dashed)

Let again,xbe a stochastic variable andx∈N
(

x̂,SxST
x

)

.
The approximation which takes the variation ofx into
account is

F(x) = F(x̂)+ ∇̄zF(x̂)(x− x̂)+
1
2

∇̄2
xF(x̂)(x− x̂)2 + ε

where

∇̄xF(x̂) = Matr i j

{

1
2h

[Fi(x̂+hSx j)−Fi(x̂−hSx j)]

}

∇̄2
xF(x̂)= Matr i j

{

1
h2 [Fi(x̂+hSx j)+Fi(x̂−hSx j)−2Fi(x̂)]

}

Hereh is a scale parameter andSx j is the j ’th column
in Sx. In the Gaussian case the choiceh2 = 3 is in
some sense optimal (see (Nørgaardet al., 2000)).
Furthermore, letnx be the dimension ofx.

Introduce the notation

F+
p = F(x̂+hSx,p) F−p = F(x̂−hSx,p) F0 = F(x̂)

For the DD2 filter the approximation is then

ẑ =
h2−nx

h2 F0 +
1

2h2

nx

∑
p=1

(F+
p +F−p )

and

Pz =
1

4h2

nx

∑
i=1

(F+
p −F−p )(F+

p −F−p )T

+
h2−1
4h2

nx

∑
i=1

(F+
p +F−p −2F0)(F+

p +F−p −2F0)T

For the first order filter (DD1) only the first terms in
the approximations are used.

In the divided difference filters (DD1 and DD2)
the propagation of mean and variance is determined
through the approximations mentioned above. The in-
ference is based on the Projection Theorem.



3.3 The Unscented kalman filter

The Uncented filter is based on the (uncentedi) trans-
formation of a stochastic variable,x, through a nonlin-
ear function,F(x) (see (Julier and Uhlmann, 2004)).
Assuming again the mean ofx is x̂ and the variance
matrix isPx = SxST

x , then the sigma points are defined
as:

x(1) = x̂ w0 =
κ

nx + κ
x(i) = x̂+

√

(nx + κ)Sxi wi =
κ

2(nx + κ)
i = 1, ... nx

x( j+nx) = x̂−
√

(nx + κ)Sx, j wj+nx =
κ

2(nx + κ)
j = 1, ... ,nx

Here κ is a scaling parameter andwi is the weight
associated with a point and

2nx

∑
i=0

wi = 1

Each sigma point is propagated through the nonlinear
function

z(i) = F(x(i)) i = 0, ... 2nx

and the approximation is then

ẑ=
2nx

∑
i=0

wiz
(i)

and

Pz =
2nx

∑
i=0

wi(z
(i)− ẑ)(z(i)− ẑ)T

The standard UKF is based on the approximation
mentioned above and the Projection Theorem. In the
scaled version of UKF the weight is chosen in a
slightly different manner (see (Julier, 2002) or (Wan
and van der Merwe, 2000) for details).

3.4 Particle filters

Particle filters comes in several versions and imple-
mentations (see e.g. (Arulampalamet al., 2002) or
(van der Merweet al., 2000)). In the most basic
version (Exp. PF) implemented in the platform the
nonlinearities are dealt with by propagating a swarm
of particle through the nonlinearities. Again assuming
x∈N(x̂,Px) a number (N) of particles are generated

x(i) ← N(x̂,Px) i = 1, ... N

and propagated through the nonlinear function

z(i) = F(x(i))

The approximation is then simply

ẑ=
N

∑
i=1

z(i) Pz =
N

∑
i=1

(z(i)− ẑ)(z(i)− ẑ)T

In the most basic version (Exp. PF) the inference is
based on the Projection Theorem and the nonlineari-
ties are handled with the method mentioned above.

In the generic particle filters (Gen. PF) the inference
is not based on the Projection Theorem, but is carried
out by applying 4 directly. That results in weights
associated with each of the particles. In this version
the particle are only initially generated as described
above. After the inference step the particles are resam-
pled from a distribution characterized by the weights.
In the last version (MH. PF) implemented here on this
platform, the resampling is performed by means of the
Metropolis-Hastings algorithm.

4. EXAMPLE STUDY

The versatility of the simulation framework is most
evident when implementing a number of examples.
For the purpose of this demonstration, a continuous
time differential equation system and a discrete time
difference equation system are selected. The contin-
uous time system is a very simple model of a dead-
reckoning guidance for a small mobile robot. The dis-
crete time system is an academic example of a nonlin-
ear system (though in a simplified form), which have
been used previously as a benchmark for testing filter
algorithms (Nettoet al., 1978))

The model of the small mobile robot (unicycle type)
is given by the set of equations stated below and is
only slightly nonlinear. The equations yield a position
in a two dimensional space as well as a heading.
An input signal consisting of the velocity,γ, and
turnrate,ω , is used as a way of introducing an external
source of disturbance. The observation equations are
purely linear, and the noise is modelled as being
additive, zero mean, Gaussian distributed in both sets
of equations.

ẋ = γ cos(θ )+v1

ẏ = γ sin(θ )+v2 (9)

θ̇ = ω +v3

The process noise sources,vn, as well as the observa-
tion noise sources,wn, are specified byN(0,0.01).

z1 = x+w1

z2 = y+w2 (10)

z3 = θ +w3

An example of a simulation using the Divided Differ-
ence (2nd order) as estimator can be seen in figure 4.
The integral of the control signal,ω , is seen below the
path traced by the robot.

In order to compare a range of techniques imple-
mented in the framework, accuracy results are given
in table 1. Attempting to find a fair estimate of the
accuracy, 100 runs were made with each algorithm and
the average values were found. The particle filters all
used 200 particles per time update. The table contains
the "worst case" values for the three states.
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Fig. 4.A path traced by the small unicycle robot. The
estimation routine employed is the 2nd order Di-
vided Difference filter with a sampling frequency
of 1 Hz. At every other estimated state, the 95%
confidence intervals are drawn as ellipses or bars
respectively. The estimate is at no point outside
the confidence intervals.

Algorithm Max. RMSE Max. Var. Est. Time

C.D. EKF 0.06799 0.005717 1.000
Std. UKF 0.07399 0.006779 2.678
Scl. UKF 0.07331 0.006693 3.673
DD1 0.07251 0.006779 2.640
DD2 0.07177 0.006781 2.658

Exp. PF 0.07591 0.006479 16.86
Gen. PF 0.09698 0.039829 17.82
PF (MH) 0.08960 0.058690 18.53

Table 1.Small mobile robot, worst value of
mean estimate (x,y,θ ) and maximum mean
variance estimate of 100 Monte Carlo sim-
ulations. The table is split into Kalman fil-
ter variants (top) and particle filters (bot-
tom). The particle filters all used 200 parti-

cles.

Also listed in the table is the computational burden of
each algorithm. The latter is given as a relative num-
ber compared to the runtime of a continuous-discrete
extended Kalman filter (C.D. EKF). The times are
relative, as other processor speeds and types will yield
different absolute results. Furthermore, the algorithms

and their runtimes may well benefit from numerical
optimizations in application specific implementations.
The algorithms used a fixed step integration (Matlab,
Dormand-Prince, order 5) to solve equation 9. The
standard Unscented Kalman filter (Std. UKF) per-
forms very well, while it’s scaled version gives a lower
mean RMSE and a slightly lower mean variance esti-
mates. The DD1 and DD2 both give low mean RMSE
and consistent variance estimates - in this case, the
second order parts of the DD2 does not yield much.

The second example is a nonlinear equation with a
linear and noisy measurement. First, the process equa-
tion,xk+1 is listed, next the measurement equation,yk.

xk+1 =
1
2

xk +
25xk

1+x2
k

+8cos(1.2k)+vn

(11)

yk = xk +wk;

Note that, both the noise sources,vk andwk, are zero
mean Gaussian white noise with variances of 10.0 and
1.0 respectively. As was the case with the small robot
model, a Monte Carlo series of simulations was made
with a variety of estimation algorithms. Two examples
of the appearance of a simulation can be found in
figure 5.

The result of the Monte Carlo simulation can be seen
in table 2. The Kalman filter type algorithms were
simulated 1000 times and the means of the root mean
square errors (RMSE) were found as well as the means
of the variance estimates. The Particle Filter types
were simulated 100 times with 200 particles per time
update in all filters.

Algorithm Mean RMSE Mean Var. Est. Time

C.D. EKF 0.9573 0.9206 1.000
Std. UKF 0.9472 0.9238 0.126
Scl. UKF 0.9503 0.9247 0.151
DD1 0.9417 0.9221 0.133
DD2 0.9260 0.9238 0.137

Exp. PF 0.9513 0.9165 2.067
Gen. PF 4.2326 31.595 5.917
PF (MH) 4.0238 28.165 8.543

Table 2.Table of results for a Monte Carlo
series of simulations on the discrete nonlin-

ear and noisy system.

Finally, in order to compare the precision of the three
particle filters as a function of the number of particles
per time update, a Monte Carlo series of simulations
was made using the benchmark system. The results
can be seen in figure 6. The series consisted of 100
runs per particle count, from 2 to 256 particles in in-
creasing steps. The algorithms converge rather quickly
as the particle count increases.
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Fig. 5. Two examples of the highly nonlinear and
noisy system given in equation 11. The topmost
is the 2nd order Divided Difference filter, while
the bottommost is a generic Particle Filter.

5. CONCLUSION

In this paper we have presented the toolbox KALM-
TOOL ver. 2 which a set of MATLAB tools for state
estimation for nonlinear systems. It contains func-
tions for extended Kalman filtering as well as for the
two new filters the DD1 filter and the DD2 filter. It
also contains functions for Unscented (standard and
scaled) Kalman filter as well as three versions of par-
ticle filters.
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