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Abstract: In this work µ-Synthesis technique is utilized to design controllers for uncertain 
time-delay systems. For this purpose, delay elements are replaced by a linear uncertain 

block based on pade approximation of the delay elements. This will result in a linear 

system with nonlinear dependency on an uncertain parameter which lies in an infinite 

interval. Two general ideas are employed to cope with the difficulties associated with 
such an irregular dependency. These two ideas are general and can be applied in other 

cases. A design example and comparison with one of the newest control techniques is 

also provided. Copyright 2005 IFAC. 
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1. INTRODUCTION 

 

An important problem associated with robust control 

methods is the degree of their conservativeness. A 

general and less conservative technique for handling 

systems with parametric uncertainties is representing 
them in the form of systems with structured 

uncertainty. This representation allows use of well 

known µ-analysis and µ-synthesis techniques. 
Representation of a system appropriately for 

application of standard control methods is actually a 

matter of art, because the representation is usually 

not unique. In this work µ- synthesis is employed for 
control of time-delay systems with uncertainties in 

delay times and in other parts of system. All delay 
elements of the system are replaced by a linear 

fractional transfomation (LFT) model based on Pade 

approximation and accounting for the approximation 

error. As will be seen, a suitable representation for 

application of µ-synthesis in this case requires coping 
with two important difficulties. First, treatment of 

nonlinear dependency of a transfer function to some 
uncertain parameters. Second, an infinite domain of 

changes for an uncertain parameter that is not a 

barrier for design of a robust controller, but due to 

weakness of the available method for handling 
infinite intervals a complementary idea is necessary. 

These two problems are not restricted to control of 

pade approximated time-delay systems. They are 

general problems that can arise in finding suitable 

representations of many systems for application of 

several robust control methods, specially µ-analysis 
and µ-synthesis.   
Control of time delay systems is a very practical 
control problem that has attracted much interest over 

the past decades and especially in recent years. The 

problem is stated in various forms for very different 

cases which include new works employing advanced 

theoretical frameworks like infinite dimensional 

systems in (Azuma et al., 2003) and other methods 
like the early idea of smith predictors which is still 

widely used and under research (Zhang et al., 2002; 

Wang et al., 1994).  There are also very different 

types of delay systems in industrial applications 

where dedicated works is being done to find better 

control solutions for them, an example is tele-



operation systems over TCP/IP or UDP/IP computer 
networks (Shiotsuki et al., 2002). A very important 

body of research in the field of time-delay systems is 

based on Lyapuonov’s second method and using 

Lyapuonov-Krasowskii functionals (Kolmanovskii et 

al., 1999). Among this large category a new and 

improved idea is introduced in (Fridman et al., 2001) 
which provides LMIs for analysis and design and is 

reported to achieve superior results with respect to 

other methods (Gao et al., 2003). The results of this 

work (Fridman et al., 2001) are chosen for a 

comparison with the results in the current paper 
where it is shown that in some cases better control 

solutions can be achieved by using the method 

presented here. 

 

The main advantages of the control solution achieved 

in the current work includes: First; the designed 
controllers is an output feedback controller (not state 

feedback). Second, the controller is composed only 

of rational transfer functions (no memory). Third, the 

proposed method can handle any delay element at 

every part of the system and with any interval for the 

uncertain delay time. Forth, software tools for control 

design are widely available, for example in µ-
Analysis and Synthesis toolbox of Matlab®. Other 

methods usually don’t have these advantages 

together. For example (Fridman et al., 2001) at least 

lacks the first one. The drawback of the method in 

current work with respect to some other methods like 

that in (Fridman et al., 2001) is the computational 

complexity of µ-design method with respect to LMI 

technique. However as mentioned before finding new 
solutions for control of delayed systems is not the 

only aim of the current work. Coping with the two 

general representation problems mentioned before 

are also results of this paper. 

 
The paper is organized as the following, in section 2 

some basic ideas about system representation are 

described. In section 3 the proposed state-space 

model for replacing a time delay element is derived. 

Section 4 contains a design example followed by a 

comparison and conclusions are presented at the end. 
 

 

2. PRELIMINARIES  

 

In this section, two ideas are presented that are 

utilized in the next section and reviewing them 

before their application can be helpful.  

 

2.1. Block expansion for better use of information 
about uncertainty 

 

Consider a system with an uncertain block as shown 

in the figure 1-a. Despite of increment in the 

uncertainty dimensions, decomposing ∆  as ∆=∆1+∆2 
in figure 1-b can be helpful for reducing 

conservativeness if new bounds on H∞ norm of ∆1 

and ∆2 contain more information than the bound on 

on H∞ norm of ∆. In the next section (during 
subsection 3.2) an uncertainty block will be 

decomposed in this way to increase efficiency of 
control design. 

            
                  (a)                                       (b) 

 

Fig.1.  a: original system         b: expanded system  

 

Example 1: consider the values 
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where ∆=∆1+∆2 connects first two outputs of constant 
transfer function P to its first two inputs and we are 
going to obtain an upper bound on the gain from 

third input to third output in presence of ∆. Without 

expansion we have ||∆||<1.52 which result in an upper 
bound of about 2.88, but application of expansion 

idea results in an upper bound of about 0.8 which 

contains more information. 

 

 

2.2. Uncertain parameters with infinite domain of 
changes  

 

Consider for example the transfer function G(s) = 

H(s)×a/(s+a) where a belongs to the interval [a0,+∞) 
and H(s) is a known transfer function. If a0 is 

sufficiently large then the uncertainty in G(s) can be 

negligible but its parametric analysis through 

standard H∞ methods encounters problems because 

center of uncertainty and its norm will become 
infinite. To solve this problem it can be considered 

that when a in G(s) is large, the uncertainty is in fact 

in higher regions of frequency domain. In other word 

the value of uncertain pole is large and is not 

important. This can provide the idea for handling this 
type of uncertainty. 

Now consider the general case for a transfer function 

with one uncertain parameter G(s,a) where the 

following limit exists. 
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where ∆f(s) is an uncertainty in high frequency region 
provided that a1 is sufficiently large. Usually we 

should have ∆fb(ω)=||G(jω,a1)-Gf(jω)|| if the 

supremum in calculation of ∆fb is not in an extremum 
with respect to a and occurs on limits of interval 

[a1,+∞). Therefore G(s,a) can be replaced by an 
equivalent system with bounded uncertainties as in 

figure 2 which allows application of known H∞ 
methods. In this figure Wf(s) is a high-pass filter 

where its magnitude is an upper bound for ∆fb(ω). 
The tighter is this bound the less conservative will be 

the replacement. The resulting bound on ∆f is ||∆f ||<1. 
  

            
 

Fig.2. An equivalent system for G(s,a). 

 

An idea for selecting a1 can be overthrowing cut-off 

frequency of Wf(s) beyond the bandwidth of system 

to make the effect of ∆f negligible. It should be 

mentioned that the way of using filters presented here 
is essentially different from common use of filters 

like in frequency weighting or other purposes. 

 

 

3. REPLACING TIME DELAY ELEMENTS 

BASED ON PADE APPROXIMATION 

 

The exact form of mth order Pade transfer function 

for approximating a time delay of value τ or in fact 
exp(-sτ) is shown in (2). Based on this approximation 
a state-space model will be derived for a delay 

element in this part which is suitable for control 

design.   
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3.1. Approximate state space model for uncertain 
time delay 

 

Consider an uncertain proper transfer function 
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where ai and bi are known parameters and αi and βi 
are uncertain parameters. This transfer function can 

be presented in state-space form with 2n+1 inputs 

and outputs where one input-output pair is for 

transfer function’s input and output and two sets of n 
input-output pairs are for connection with two real 

diagonal uncertainty blocks diag(α0,α1,…,αn-1) and 

diag(β0,β1,…,βn-1) and dimension of total structured 
uncertainty block will be 2n. In an all-pass transfer 

function like Pade approximation of order m 
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where P0 and P1 are polynomial functions (with 

uncertainty in coefficients), dimensions of structured 

uncertainty block are reduced. It can be shown that a 
Pade transfer function can be represented in an 

alternative form of 
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where some elements of p  and q  are zero and total 

count of nonzero elements in r  and q  is m. A state-

space realization for P(s) can be derived as 
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allowing for uncertainty in nonzero elements of r  

and q , pushing uncertain parameters out of main 

model in a feedback path from a new output z, 

through a diagonal real block of uncertain parameters 

∆p to a new input w, the above state space realization 

can be extended to 
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where in (4-3) “sign” is element-wise sign function 

and “1” means a matrix with all of its elements equal 

to one. 

 

 

3.2. Improvement in uncertainty handling 
 

The state-space model (4) is derived to handle 

uncertainty in coefficient values (m!/k!)am-k, k=1…m 

in equation (2) independently. However these 

uncertainties all depend on uncertainty in a single 
value a which is assumed to lie in a bounded interval. 

This dependency is nonlinear and can not be handled 

directly. However any of the coefficients can be 

decomposed to sum of a term with linear dependency 

on 
a

δ  (deviation of a from its central or mean value) 

and another term with nonlinear dependency on a but 

with minimized largest absolute value in the domain 

of changes for a so that  
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According to subsection 2.1, expansion of m×m 

uncertainty block ∆p to a 2m×2m block diagonal 

uncertainty composed of  a Λb and ∆r will provide a 
better condition for handling uncertainty. Now we 

are going to show that due to special structure of 

state space model in (4) the dimensions of new 

uncertainty block can be decreased. Combination of 

(5) with (4-1,2,3) results in 
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This later set of equations can be represented as 
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Therefore dimensions of new uncertainty block ∆e 
are reduced to m+2 × m+2. When m=1,   in (2) 

becomes an empty matrix and this makes possible to 

reduce dimensions of ∆e from 3×3 to 2×2. 
Summarizing the result of this subsection, equations 

in (6) present a state-space realization for time delay 

and contain extra input w1 and output z1 suited for 

less conservative modeling of uncertainty in delay 

time τ  (=1/a) as a real diagonal block from z1 to w1. 

Matrices 
1w

B  or 
1z

C can be normalized so that each 

diagonal element of uncertainty block lies in [-1,+1]. 

This can be done for example by writing ∆e = Λe ∆en= 

∆en Λe where diagonal matrix ∆en contains the 

normalized elements and Λe is a diagonal matrix of 

constant coefficients that should be absorbed 
1w

B in 

1z
C or (or both). In the following it is assumed that 

this normalization is performed on model (6).  
 

 

3.3. Modeling approximation error as uncertainty 

 

It is known that mth order Pade approximation Pm(s) 

deviates from delay transfer function exp(-sτ) as 
frequency increases. In other word the approximation 

error transfer function Em(s)=exp(-sτ)-Pm(s) has a 
high-pass nature. A good idea for modeling 

approximation error by uncertainty is the solution of 

figure (3). Weighting function Wd(s) is a high-pass 

filter where its magnitude is an upper bound for 

magnitude of Em(s) over all frequencies. A tighter 

bound can reduce conservativeness. By increasing 
the order of Pade approximation m, cut-off frequency 

of Em(s) and Wd(s) can be increased. Intuitively, if the 

cut-off frequency of Wd(s) becomes larger than 

control system bandwidth, then it can be stated that 

effect of approximation error is negligible because it 

belongs to regions outside of working bandwidth. It 

should be clear that a bound on ∆d is ||∆d||<1. 



 

             
 

Fig.3. modeling approximation error by uncertainty 

 

 
3.4. Boundedness of uncertainties 

 

A delay interval of τ∈(0,T] results in an infinite 

domain of changes for a, namely a∈[1/T,+∞). This 
causes problems in parametric analysis of uncertainty 

through standard H∞ methods. A solution for this 
difficulty is extending method in subsection 2-2 to 

contain the idea in subsection 3-3. Denoting mth 

order Pade approximation of time delay 1/a by 

Pm(s,a). This can be done by writing 
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In comparison to systems of figures 2 and 3, an 

uncertain transfer function with bounded uncertainty 

that can replace time delay is shown in figure 4. 

Again Wf(s) is a high-pass filter and its magnitude 

should be an upper bound for ∆fb(ω). A tighter bound 
results in a less conservative model. It should be 

indicated that cut-off frequency of Wf(s) depends on 

the value of T1. Smaller values of T1 result in larger 

cut-off frequencies. It is possible to calculate first 

Wd(s) in subsection 3-3 and then to select T1 such that 

magnitude of Wd(s) becomes an upper bound for 

∆fb(ω). In this manner the resulting Wd(s) is a choice 
for Wf(s).  

 

             
  

Fig.4. Replacement for time delay with bounded 

domain of parameter changes 

 
 

3.5. State-space model of uncertain time delay for 

replacing delay elements 

 

Combining the results of subsections 3-2 and 3-4, the 

state space realization (6) should be used for Pm in 
figure 4. The result will be an LFT that can replace 

time delay elements anywhere in an interconnection 

of LTI systems. For example in figure 5 the idea is 

applied to a series connection of a time delay with an 

uncertain rational transfer function. New uncertainty 

blocks like ∆m in figure 5 should be augmented to 

those of delay elements (one or multiple ∆e and ∆f 
blocks) to form the overall structured uncertainty 

block. µ-synthesis control design method can be used 
for the resulting state space model. 
 

 

 
 

Fig.5. Application of resulting model for time delay 

4. A DESIGN EXAMPLE  AND 

COMPARISON  
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In this subsection control design for an example 
uncertain system with the following transfer function 

is considered where |δ1|<1, |δ2|<1 and delay time τ is 
between 0 and 1.  
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using first order Pade approximation and applying 
method of subsection 3-4 an uncertain state space 

model is calculated. A Wf(s) filter is designed as 

below and a value of 0.4 for T1 is achieved.  
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Connection of the obtained state space model with a 

realization for rational part of G(s) results in a block 

composition of type that is shown in figure (5). 

Robust stability control design using Matlab µ-
synthesis toolbox for the total system results in an 

upper bound for structured singular value µ<0.805 
which guarantees system stability subjected to the 

uncertainties.  
Now we are going to design a controller by using the 

method of (Fridman et al., 2001) for comparison. 

Although the method of (Fridman et al., 2001) is for 

state feedback design (the µ-synthesis used here has 
the important advantage that it is an output feedback 

design method), but a comparison will show 

effectiveness of the method presented in this paper.  
To design a controller based on the method of 

(Fridman et al., 2001) a delayed state feedback (part 

III-B) with delay time τ=1 is designed for rational 
part of G(s) which have resulted in an upper bound 

for system gain of g=1.89 viewed from input and 

output connections from G(s) to uncertainty block 

diag(δ1,δ2). This result can not guarantee system’s 
stability in presence of uncertainty.  

For a direct comparison of our method with above 
result of g=1.89, system’s structured singular value in 

our method can be calculated when structured 

uncertainty block diag(δ1,δ2) is replaced by a 
complex unstructured 2×2 block with its norm 

limited to one. This results in a value of 1.29 which is 

still less than g=1.89 and shows strictly the advantage 

of method in this paper for this example. However 
other examples were found that method of (Fridman 

et al., 2001) can generate better results. The 

conditions under which one of methods generate 

better results depends on nature of both methods and 

is not still completely clear for the authors, but it is a 

question for further research. 
 

 

 

 

 

 
 

5. CONCLUSIONS 

 

An Linear fractional transformation (LFT) uncertain 

model was presented to replace uncertain time delay 
elements in a system. The resulting model is suitable 

for application of techniques like µ-synthesis. 
Derivation of the LFT model requires application of 

some additional ideas including: First; uncertainty 

block expansion for reducing conservativeness. 

Second, a solution for handling uncertain parameters 

belonging to infinite intervals. Some way of reducing 

uncertainty block dimensions was also applied. These 
ideas are related to general problems and can be 

applied in many other cases. The LFT model of 

uncertain time delay was utilized for control design 

using µ-synthesis method and comparison was made 
to show the efficiency of method. Advantages and 

drawbacks of the presented method where also 

reviewed in the introduction section. 
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