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Abstract: The objective of this contribution is to quantify benefits of optimal input
design compared to the use of standard identification input signals, e.g. PRBS signals for
some common, and important, application areas of system identification. Two benchmark
problems taken from process control and control of flexible mechanical structures are
considered. We present results both when the design is based on knowledge of the true
system (in general the optimal design depends on the system itself) and for a practical
two step procedure when an initial model estimate is used in the design instead of the
true system. The results show that there is a substantial reduction in experiment time and
input excitation level. A discussion on the sensitivity of the optimal input design to model
estimates is provided. Copyright c©IFAC 2005
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1. INTRODUCTION

Many industrial processes have (very) slow responses
which leads to long and expensive identification ex-
periments (Ogunnaike, 1996). It is thus important to
design the experiments carefully as to maximize the
information contents. Another area where input design
can be crucial is when identifying flexible mechanical
structures. Here, time is not crucial but the experi-
ments are usually severely constrained in order to not
damage equipment.

Input design has a long history and (Zhu, 2001; Rivera
et al., 2003; Lee, 2003; Jacobsen, 1994) are some
recent contributions related to process control. Typical
design problems correspond to non-convex programs
and, hence, computational aspects have limited the ap-
plicability of optimal input design. One way of avoid-
ing this has been to rely on high-order expressions for
the model accuracy (Gevers and Ljung, 1986; Fors-
sell and Ljung, 2000). Recently, another interesting
approach to input design has been opened up. It has
been shown that a wide range of input design problems
are equivalent to convex programs (Hildebrand and
Gevers, 2003; Jansson and Hjalmarsson, 2004a; Bom-
bois et al., 2004b). The purpose of this contribution is

1 This work was partially supported by the Swedish Research
Council.

to examine more closely what these new frameworks
have to offer for the aforementioned application areas.
More precisely, the objective is twofold:

(I) The first aspect is to quantify possible benefits
of optimal input design for the two applications.
The use of input signals with optimal frequency
distribution will be compared to the use of stan-
dard identification input signals e.g. PRBS sig-
nals, see for example (Tan and Godfrey, 2002).
The benefits will be quantified in terms of saved
experiment time and in possible reduction of in-
put excitation.

Since process modelling may be very time
consuming we will in this paper illustrate pos-
sible time savings by using an optimal strategy
for the considered process model. Here the time
it takes to obtain a certain quality of the model
is measured and compared for different inputs
when the input energy is held constant.

For the mechanical system, the experiment
time is in many cases not an issue. Instead, we
will study possible savings in the level of input
excitation with an optimal strategy.

(II) The second aspect is to enlighten some robust-
ness issues regarding the input design. Optimal
input designs in general depend on the unknown
true system. This is typically circumvented by
replacing the true system with some estimate in



the design procedure. But there exist very few
hard results on the sensitivity and the robustness
of these optimal designs with respect to uncer-
tainties in the model estimate that is used in the
design.

Here we will illustrate situations where input
designs are very sensitive to model errors in-
cluded in the design. Furthermore, we will redo
the comparison in (I), but in a more realistic
setting where the optimal design philosophy is
replaced by a two-step procedure. The approach
taken is inspired by the work in (Lindqvist and
Hjalmarsson, 2001) and (Lindqvist, 2001). In the
first step an initial model is estimated based on a
PRBS input. An input design based on this esti-
mate is then applied to the process. This adaptive
approach is compared to an approach which only
uses PRBS as input. The comparison is based
on Monte-Carlo simulations in order to study the
average gain in performance.

Usually the comparison between different input sig-
nals is in terms of confidence bounds, see e.g. (Gevers
and Ljung, 1986), (Forssell and Ljung, 2000) and
(Shirt et al., 1994). For industrial applications how-
ever perhaps more relevant measures are excitation
level and experiment time, treated e.g. in (Bombois et
al., 2004b) and (Rivera et al., 2003). This paper is or-
ganized as follows. Section 2 gives some background
on the considered identification problem including the
optimal input design setup. The optimal input design
is applied on a process plant in Section 3 and on a
resonant system in Section 4. The paper is concluded
in Section 5.

2. BASIC ASSUMPTIONS AND CONSTRAINTS

We will assume that the systems obey the discrete-
time linear relation

y(t) = Go(q)u(t)+Ho(q)e(t) (1)

where Go and Ho represents the system and the noise
dynamics, respectively, with q being the delay opera-
tor. Furthermore, y is the output, u is the input and e is
white noise. For the modelling of (1) we will consider
identification within the prediction error framework,
(Ljung, 1999). Thus the starting point is a parameter-
ized model structure represented by

y(t) = G(q,θ)u(t)+H(q,θ)e(t). (2)

where the transfer operators G(q,θ) and H(q,θ) are
parameterized by a vector θ ∈ R

n. Based on (2),
the one-step ahead predictor of the output becomes
ŷ(t,θ) = H−1(q,θ)G(q,θ)u(t)+ [1−H−1(q,θ)]y(t).
A common way to determine the parameter estimate,
θ̂N , based on N observations of input/output data, is to
pick the minimizer

θ̂N = argmin
θ

1
2N

N

∑
t=1

(y(t)− ŷ(t,θ))2

This has become a quite standard approach. One of the
reasons for this is that there exist a large amount of
statistical results that support the method. For exam-
ple, when the model is flexible enough to capture the
true dynamics, it is well known that the estimate θ̂N
will converge, under mild assumptions, to the parame-
ters of the true system. Furthermore, it is possible to

exactly characterize the asymptotic covariance matrix
P of the parameters, see e.g. (Ljung, 1999). It can be
shown that the only quantity in open-loop operation
that can be used to shape P, is actually the spectrum
of the input. This fact has been very important from
an input design perspective and it has been widely ap-
plied, see e.g. (Goodwin and Payne, 1977; Cooley and
Lee, 2001; Hildebrand and Gevers, 2003; Bombois et
al., 2004a; Jansson and Hjalmarsson, 2004a).

We will assume that we have a full-order model struc-
ture and hence only variance errors occurs. Therefore,
for large data lengths, the model error can be charac-
terized by some function of the parameter covariance
P. To define a proper quality function one has to take
the intended use of the model into account. Here we
will consider control design. In control applications, it
is common to have frequency by frequency conditions
of the error on the frequency function estimate. One
example is

∆(θ) = T
Go −G(θ)

G(θ)
(3)

where T is a weighting function. When T is equal to
the designed complementary sensitivity function, the
H∞−norm of (3) has been considered as a relevant
measure of both robust stability and robust perfor-
mance (Morari and Zafiriou, 1989; Zhou et al., 1996;
Hjalmarsson and Jansson, 2003); e.g. , ‖∆(θ)‖∞ < 1 is
a classical robust stability condition. When the model
G(θ) is obtained from an identification experiment
it will lie in an uncertainty set. Hence a reasonable
objective is therefore to design the identification ex-
periment such that ∆(θ) becomes small for all models
in such an uncertainty set. We will consider the uncer-
tainty set

Uθ = {θ : N(θ −θo)
T P−1(Φu)(θ −θo) ≤ χ} (4)

which defines a confidence region for the estimated
parameters and where χ specifies the size of this
confidence region 2 . This gives the following quality
measure

|∆(θ)| ≤ γ ∀ ω, ∀θ ∈Uθ (5)

This constraint implies that ‖∆‖∞ ≤ γ for all models
in the confidence region (4). Based on the quality
measure (5), we will pose the input design problem
as

minimize
Φu

α
subject to |∆(θ)| ≤ γ ∀ ω

N(θ −θo)
T P−1(Φu)(θ −θo) ≤ χ

1
2π

∫ π

−π
Φu(ω)dω ≤ α

0 ≤ Φu(ω) ≤ β (ω)

(6)

The objective of this input design problem is to find
the input spectrum with the least energy that satisfies
(5). There may also exist a frequency by frequency
constraint on the input spectrum here represented by
β (ω). The input design problem is a non-convex and
non-trivial optimization problem. However, by suit-
able parameterizations of the input spectrum it is pos-
sible to obtain a finite-dimensional convex program,
see (Jansson and Hjalmarsson, 2004b) and (Jansson

2 For more details on confidence regions, we refer to (Ljung, 1999).



and Hjalmarsson, 2004a). Here we will use one of
these parameterizations given by

Φu =
M−1

∑
k=0

ck cos(kω) (7)

This parametrization is rather flexible. For example,
both power and frequency by frequency constraints
on the input spectrum can be handled, which will be
shown in the examples. Furthermore, any spectrum
can be approximated to any demanded accuracy pro-
vided that the order M is sufficiently large. However,
when M becomes too large, computational complexity
becomes an issue. This parametrization was originally
introduced in (Lindqvist and Hjalmarsson, 2001). No-
tice that (7) corresponds to white noise when M = 1.

The parameters in (6) are specified such that |∆| has
to be less than 0.1 for at least 95% of the estimated
models. Hence γ = 0.1 and the size of the confidence
region χ is determined such that Pr(χ2(n) ≤ χ) =
0.95 where n denotes the number of parameters in
the model 3 . For example, χ = 9.49 when n = 4. The
frequency weighting T in (3) will be a discretization
of T̃ or T̃ 2 where

T̃ (s) =
ω2

0

(s2 +2ξ ω0s+ω2
0 )

(8)

with the damping ξ = 0.7 and where ω0 will be used
to change the bandwidth of T̃ .

3. A PROCESS CONTROL APPLICATION

The main objective of this section is to give a flavor
of the usefulness of using optimal input design for
identification of models for process control design.
The process plant is defined by (1) with the ARX
structure

Go(q) =
B(q)

A(q)
Ho(q) =

1
A(q)

(9)

where A(q) = 1− 1.511q−1 + 0.5488q−2 and B(q) =
0.02059q−1 + 0.01686q−2. The sampling time is 10
seconds and e(t) has variance 0.01. This is a a slight
modification of a typical process control application
considered in (Skogestad, 2003). The process has a
rise time of 227 seconds, and consequently, collecting
data samples for the identification takes long time.
Therefore the objective of using optimal input design
for this plant is to keep the experiment time to a
minimum.

3.1 Optimal design compared to white input signals

Here we will compare the experiment time required
for an optimal input design to achieve a certain quality
constraint with the corresponding time required for a
white noise input. The optimal input design will be
based on knowledge of the true system. In reality, of
course, this is not a feasible solution since the true
system is unknown. However, the motivation for this
analysis is to investigate what could in the best case
be achieved with optimal input design.

3 χ2(n) denotes the χ2-distribution with n degrees of freedom.
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Fig. 1. The ratio Nwhite
Nopt

as function of the bandwidth of
T for the process plant.
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Fig. 2. The process plant. Thick solid line: optimal
input spectrum. Dashed line: transfer function T .
Dash-dotted line: open loop system. Thin solid
line: white input spectrum.

The optimal design is based on a data length of Nopt =
500. The order of the input spectrum is M = 30, see
(7). Furthermore, T is a discretization of T̃ 2 in (8)
and there is no frequency by frequency bound β (ω)
on Φu. In the comparison we have normalized the
power of the white input to be equal to the power
of the obtained optimal input. The data length of the
white input has then been increased until 95% of the
obtained models satisfy |∆| ≤ 0.1. This data length is
denoted Nwhite and the ratio Nwhite/Nopt is plotted in
Figure 1 for different bandwidths of T . This example
shows that the white input requires about 10 times
more data to satisfy the quality constraint, which is
a quite substantial amount of data. In other words, the
optimal experiment takes less than one and a half hour
compared to almost 14 hours with a white input. The
input spectra corresponding to high bandwidth of T
are shown in Figure 2.

3.2 Optimal input design in practice

To handle the more realistic situation where the true
system is unknown, we will replace the optimal design
strategy by a two-step procedure. In the first step an
initial model is estimated based on a PRBS input 4 .
This model estimate is used as a replacement for the
true system in the design problem (6). The obtained
sub-optimal solution is then applied to the process in
the second step. This adaptive approach is compared
to an approach which only uses PRBS as input. The
two strategies are illustrated in Figure 3. The main ob-
jective is to investigate whether there are any benefits
of using a sub-optimal design approach or not. The
comparison is based on Monte-Carlo simulations in
order to study the average gain in performance.

4 PRBS is a periodic, deterministic signal with white-noise-like
properties.
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Fig. 3. Two strategies for input design. (a) The ad hoc-
solution. A PRBS is used for the entire identifica-
tion experiment as input signal. (b) Adaptive in-
put design. The input data set is split in two parts.
The first part, a PRBS, is used for identification
of an initial model estimate. The second part is
an, w.r.t the initial model, optimally designed in-
put.
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Fig. 4. The process plant. Above: the input sequence
not involving optimal input design. Below: the
input sequence when involving optimal input de-
sign. The first part of the signal is used to identify
an initial model estimate.

First consider the two-step adaptive input design ap-
proach. We use a PRBS with length Ninit = 300 and
amplitude 3 to estimate an initial model estimate Gm
of the true system. This model is used for input de-
sign based on (6) with no upper bound on the in-
put spectrum and experiment length Nopt = 500. This
strategy is compared to the approach where a single
set of PRBS is used in each Monte-Carlo run. For
the comparison’s sake the amplitude of the the PRBS
is tuned so that the signal has the same input power
as the average power of the input in the two-step
approach. After 1000 Monte-Carlo simulations with
different noise realizations, 98.3% of the models with
the two-step procedure satisfy ‖∆‖∞ ≤ 0.1. With an
experiment length of N = 3600, 96.4% of the models
satisfy the constraint for the PRBS approach.

One realization of the input sequences for both strate-
gies are plotted versus time in hours in Figure 4. We
clearly see that the experiment time when input design
is involved is less than 2 hours and 15 minutes, but
more than 10 hours for the PRBS input. We conclude
that for the considered quality constraint, the exper-
iment time can be shortened substantially when the
sub-optimal design is used.

4. A MECHANICAL SYSTEM APPLICATION

In this section, input design is applied to a reso-
nant mechanical system. The system is represented
by a slightly modified version of the half-load flexible
transmission system proposed in (Landau et al., 1995)
as a benchmark problem for control design. It has

been used for input design illustrations in (Bombois et
al., 2004a). The system is defined by the ARX struc-
ture (9) with B(q) = 0.10276q−3 + 0.18123z−4 and
A(q) = 1−1.99185q−1 +2.20265q−2−1.84083q−3 +
0.89413q−4 and e(t) is white noise with variance 0.01.
The sampling time is Ts = 0.05 seconds.

The experiment time is not an issue for this system.
Therefore, the objective of the design is to obtain an
input that, for a given data length, has as low excitation
level as possible.

4.1 Optimal design compared to white input signals

The optimal design will be based on the true system,
as the example in Section 3.1. Here T is a discretiza-
tion of T̃ and the data length is 500 for the optimal
design as well as for the white input. The reason
is that we will compare excitation levels rather than
experiment times. The order of the input spectrum is
M = 30.

First, consider the optimal input design when there is
no upper bound imposed on the input spectrum. The
input power αopt for the optimal input is plotted versus
the bandwidth of T in Figure 5. It is clear that the
input excitation increases with increasing bandwidth
of T . This has to do with the definition of ∆. When the
bandwidth increases the relative error around the first
resonance peak starts to dominate in ‖∆‖∞ and more
input power has to be injected. The optimal spectra
for low and high bandwidth, respectively, are plotted
in Figure 6 and Figure 7. Here we see that the input
power is concentrated around the first resonance peak
for high bandwidths.

Let αwhite be the required input power for a white
input to achieve the specified model quality. The ratio
αwhite/αopt is plotted versus the bandwidth of T in
Figure 5. We can conclude that when the total power
is compared there are certainly benefits obtained us-
ing an optimal strategy compared to the white input,
especially for high bandwidths where the white input
requires about ten times the energy required for the
optimal design. This is due to the large impact of the
first resonance peak and the capability of the optimal
design to distribute much energy around this peak and
less for other frequencies.

The optimal input design method that is presented can
handle frequency-wise conditions on the input spec-
trum, see β (ω) in (6). This possibility is now used.
A frequency-wise upper bound on the input spectrum
is included in the design problem (6) that restricts the
possibility to inject energy around the first resonance
peak. The upper bound and the obtained spectrum is
shown in Figure 8. This is a good illustration of the im-
pact of the first resonance peak on the required input
power. With this restriction we need about 14 times
more energy than without the bound. So there is a
delicate trade-off between demanding a small relative
model error around the resonance peak, the possibility
to excite this frequency band and required total input
power.

4.2 Input design in a practical situation

In this section, the parameters of the true system
are assumed to be unknown. As for the process ap-
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Fig. 6. The mechanical system, low bandwidth of T .
Thick solid line: optimal input spectrum. Dashed
line: transfer function T . Dash-dotted line: open
loop system. Thin solid line: white input spec-
trum.
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Fig. 7. The mechanical system, high bandwidth of T .
Thick solid line: optimal input spectrum. Dashed
line: transfer function T . Dash-dotted line: open
loop system. Thin solid line: white input spec-
trum.
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Thick solid line: optimal input spectrum. Dashed
line: transfer function T . Dash-dotted line: open
loop system. Thin solid line: upper bound on Φu.
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Fig. 9. The mechanical system. Above: the input se-
quence not involving optimal input design. Be-
low: the input sequence when involving optimal
input design. The first part of the signal is used
to identify an initial model estimate. The second
part is the optimal input signal.

plication we will handle this situation by replacing
the optimal design procedure by an adaptive two-
step approach. For the mechanical system, the two-
step adaptive approach goes as follows. A PRBS with
length Ninit = 300 and amplitude 0.5 is used for the
estimation of the initial model Gm. An input is de-
signed based on Gm using (6) with Nopt = 500. This
strategy is compared with the approach using a single
set of PRBS data of length 800, i.e. the data lengths
are equalized. The signal power of the PRBS is set
to 6 times that of the two-stage sub-optimal input in
each Monte-Carlo run. One realization of the input
sequences for both strategies are plotted versus time in
Figure 9. For 1000 Monte-Carlo simulations, 92.3%
of the obtained models from the two-step procedure
passed the constraint ‖∆‖∞ ≤ 0.1. The corresponding
figure for the PRBS approach was 91.8%. Thus the
input excitation for the PRBS approach needs to be
about 6 times the optimal input power to produce
equally good models. We conclude that for the given
quality constraint, the excitation level of the input sig-
nal can be reduced significantly using the illustrated
sub-optimal input design.

4.3 Sensitivity of the optimal design

It was illustrated in the previous section that the input
design performed well even when the true system
was replaced by an estimated model. However, some
caution must be taken. In this section we will illustrate,
by means of an example, that the optimal input design
method may be sensitive to the quality of the initial
model.

Let us again consider the mechanical system. Assume
that the true system is unknown, but that we have
a preliminary model Gm that deviates from the true
system Go. The magnitude plots of Gm and Go are
shown in Figure 10. Now assume that the true system
is replaced with Gm in the design problem (6). The
resulting sub-optimal input spectrum is plotted in Fig-
ure 10 together with the optimal input spectrum based
on Go. The bandwidth of T is 8 rad/s.

We see from Figure 10 that the input power is differ-
ently distributed for the sub-optimal design compared
to the optimal one. However, the energy is in both
cases concentrated around the first resonance peak.
This is completely in line with the observations in
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Section 4.1 where it was recognized that it is effective
to inject energy around the first resonance peak for
high bandwidths of T . However, an input design that
concentrates the power around a resonance peak may
be very vulnerable with respect to bad model estimates
of this peak. The model Gm is one such example.
For example, out of 100 Monte-Carlo identification
experiments, only 23 of the obtained models with
the sub-optimal design achieve the quality constraint
‖∆‖∞ < 0.1. Optimally it should be at least 95%. We
conclude that it is important that the initial experi-
ment captures the resonance peaks of importance. The
reason why the sub-optimal method in Section 4.2
performed well is probably that the initial experiment
with the PRBS signal excited these peaks yielding
proper initial model estimates.

5. CONCLUSIONS

In this paper we have illustrated and quantified possi-
ble benefits with optimal input design in identification
for two applications. We have compared optimally
designed input signals with white input signals. The
results show significant benefits with optimal input
design. Either the experiment time can be shortened or
the input power can be reduced. Through Monte-Carlo
simulations it is illustrated that there are advantages
also in the case where the true system is replaced by a
model estimate in the design.
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