CONTROLLER FOR A NONLINEAR SYSTEM WITH AN INPUT CONSTRAINT BY USING A CONTROL LYAPUNOV FUNCTION II

Nami Kidane^{*} Hisakazu Nakamura^{*} Yuh Yamashita^{**} Hirokazu Nishitani^{*}

* Graduate School of Information Science Nara Institute of Science and Technology Email: nami-ki, hisaka-n, nisitani@is.naist.jp ** Graduate School of Information Science and Technology Hokkaido University Email: yuhyama@ssi.ist.hokudai.ac.jp

Abstract: Malisoff and Sontag proposed a universal control formula for a nonlinear system such that the k-norm of inputs is less than one, where $1 < k \leq 2$. We have generalized the Malisoff's formula so that it can be applied in any case of $k \geq 1$. However, the generalized controller may become discontinuous if k = 1 or $k = \infty$. In this paper, we propose a new control formula that is continuous except the origin in any case of $k \geq 1$. We also confirm the effectiveness of the proposed controller by computer simulation. *Copyright* ©2005 *IFAC*

Keywords: nonlinear systems, constraints, controllers, Lyapunov methods

1. INTRODUCTION

We consider a nonlinear system such that inputs are restricted to the Minkowski ball U_k . U_k is a subspace of \mathbb{R}^m such that the k-norm of inputs is less than one. Lin and Sontag proposed a universal control formula with respect to U_2 by using a control Lyapunov function (Lin and Sontag, 1991). Malisoff and Sontag provided a universal control formula with respect to U_k , where $1 < k \leq 2$ (Malisoff and Sontag, 2000). We have generalized the Malisoff's controller so that it can be applied in any case of $k \geq 1$ (N. Kidane and Nishitani, 2005). However, the generalized controller may become discontinuous if k = 1 or $k = \infty$. Due to discontinuity of the controller, inputs may have chattering.

In this research, we propose a new control formula that is continuous except the origin in any case of $k \ge 1$. We show the design scheme briefly.

First, we consider a continuous function $\bar{k}(x)$ and a subspace $\bar{U}'_{\hat{k}} \subset \bar{U}_{\hat{k}}$ such that $\bar{U}_{\hat{k}}$ is the closure of $U_{\hat{k}} \bar{U}'_{\hat{k}}$ is similar to $\bar{U}_{\hat{k}}$ (same shape), $\bar{U}'_{\hat{k}}$ becomes a small ball if $P(x) \leq 0$, and $\bar{U}'_{\hat{k}} \to \bar{U}_{\hat{k}}$ as $P(x) \to$ 1. Second, we stabilize the system by the input that minimizes $\dot{V}(x, u)$ in $\bar{U}'_{\hat{k}}$. We also confirm the effectiveness of the proposed controller by computer simulation.

2. PRELIMINARY

In this section, we introduce mathematical notation and some definitions. For a vector $x \in \mathbb{R}^n$, *k*-norm is defined as

$$||x||_{k} = \left(\sum_{i=1}^{n} |x_{i}|^{k}\right)^{\overline{k}}.$$
 (1)

We obtain the following lemma:

Lemma 1. Assume that $x \in \mathbb{R}^n$ and $1 \le k_1 < k_2$. Then,

$$\|x\|_{k_1} \ge \|x\|_{k_2}.$$
 (2)

Proof 1. Let $e \in \mathbb{R}^n$ be a vector such that $||e||_{k_1} = 1$, and $f : \mathbb{R}^n \to \mathbb{R}^n$ be a bijection defined by

$$f(x) := \left(|x_1|^{\frac{k_1}{k_2}} \operatorname{sgn}(x_1), \dots, |x_n|^{\frac{k_1}{k_2}} \operatorname{sgn}(x_n) \right)^T.$$

Note that $||f(e)||_{k_2} = 1$. The norm $||e||_{k_2}$ can be written as

$$||e||_{k_2} = \left(\sum_{i=1}^n |e_i|^{k_2}\right)^{\frac{1}{k_2}} = \left(\sum_{i=1}^n |e_i|^{k_1} |e_i|^{k_2 - k_1}\right)^{\frac{1}{k_2}}$$
(3)

From $||e||_{k_1} = 1$, we get $|e_i| \leq 1$ and $|e_i|^{k_2-k_1} \leq 1$. From (3), $|e_i|^{k_2-k_1} \leq 1$, and $\sum_{i=1}^n |e_i|^{k_1} = 1$, we obtain $||e||_{k_2} \leq 1$. On the other hand, any vector $x \in \mathbb{R}^n$ can be written as

$$x = \|x\|_{k_1}\bar{e} = \|x\|_{k_2}\hat{e},\tag{4}$$

where $\bar{e} \in \mathbb{R}^n$ and $\hat{e} \in \mathbb{R}^n$ are vectors such that $\|\bar{e}\|_{k_1} = 1$ and $\|\hat{e}\|_{k_2} = 1$. From (4), we get

$$\|x\|_{k_2} = \|x\|_{k_1} \|\bar{e}\|_{k_2}.$$
(5)

From $\|\bar{e}\|_{k_2} \leq 1$ and (5), we obtain (2). $\|x\|_{k_1}$ and $\|x\|_{k_2}$ are equal if and only if $\|x_i\| = \|x\|$ for some $i \in \{1, ..., n\}$.

In this paper, we consider the following affine system:

$$\dot{x} = f(x) + g(x)u, \tag{6}$$

where $x \in \mathbb{R}^n$ is a state vector and $u \in U \subseteq \mathbb{R}^m$ is an input vector. We assume that $f : \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R}^n \to \mathbb{R}^{n \times m}$ are continuous mappings and f(0) = 0. We use the notation $\mathbb{R}_{>0} := (0, \infty)$ and $\mathbb{R}_{\geq 0} := [0, \infty)$.

Definition 1. (control Lyapunov function). A smooth proper positive definite function defined on a neighborhood of the origin $X \in \mathbb{R}^n$, V : $X \to \mathbb{R}_{\geq 0}$ is said to be a local control Lyapunov function for system (6) if the condition

$$\inf_{u \in U} \left\{ L_f V + L_g V \cdot u \right\} < 0 \tag{7}$$

is satisfied for all $x \in X$, $x \neq 0$. Moreover, V(x) is said to be a control Lyapunov function (clf) for system (6) if V(x) is a function defined on \mathbb{R}^n and condition (7) is satisfied for all $x \in \mathbb{R}^n$, $x \neq 0$. \Box

Definition 2. (small control property). A (local) control Lyapunov function is said to satisfy the small control property (scp) if for any $\varepsilon > 0$, there is a $\delta > 0$ such that, if $x \neq 0$ satisfies $||x|| < \delta$, then there is some $u \in U$ with $||u|| < \varepsilon$ such that $L_f V + L_q V \cdot u < 0$.

If there exists no input constraint $(U \equiv \mathbb{R}^m)$, a smooth radially unbounded positive definite function $V : \mathbb{R}^n \to \mathbb{R}_{>0}$ is a clf if and only if

$$L_g V = 0 \implies L_f V < 0, \quad \forall \ x \neq 0.$$
 (8)

We define h(x) as the right hand side of system (6) with a state feedback law $u = \beta(x)$;

$$\dot{x} = f(x) + g(x)\beta(x) := h(x).$$
 (9)

If $\beta(x)$ is continuous except the origin, the closed system has always a Carathéodory solution for each initial state. On the other hand, if $\beta(x)$ is not continuous, Carathéodory solution do not exist. Hence, we associate (9) with a differential inclusion of the form

$$\dot{x} \in F(x). \tag{10}$$

In this paper, we apply the Fillippov's approach

$$F(x) = \bigcap_{\varepsilon > 0} \bigcap_{\mu_n(N)} \overline{co} \{ h(B_{\varepsilon}(x) \backslash N) \}, \qquad (11)$$

where $B_{\varepsilon}(x)$ denotes the open ball of center x and radius ε , \overline{co} denotes the convex closure of a set, and μ_n is the Lebesgue measure of \mathbb{R}^n .

Definition 3. (Lyapunov function). A smooth and positive definite function defined on a neighborhood of the origin $X \subset \mathbb{R}^n$, $V : X \to \mathbb{R}_{\geq 0}$ is said to be a local Lyapunov function for system (10) if the following condition is satisfied for all $0 \neq x \in X$:

$$\frac{\partial V}{\partial x} \cdot v < 0, \quad \forall \ v \in F(x).$$
(12)

Moreover, V(x) is said to be a Lyapunov function for system (10) if V(x) is a radially unbounded function defined on \mathbb{R}^n and condition (12) is satisfied for all $0 \neq x \in \mathbb{R}^n$. \Box

Theorem 1. (Bacciotti and Rosier, 2001) Let F be a set-valued map such that the local existence of solutions of (10) is insured. If a (local) Lyapunov function exists, then the origin is (locally) asymptotically stabilizable.

3. PREVIOUS WORK

When there is not any input constraint, Sontag proposed a universal control formula for a nonlinear system (Sontag, 1989). In this paper, we consider a nonlinear system such that inputs are restricted to the Minkowski ball of radius 1;

$$U_{k} = \left\{ u \in \mathbb{R}^{m} \left| \|u\|_{k} = \left(\sum_{i=1}^{m} |u_{i}|^{k} \right)^{\frac{1}{k}} < 1 \right\},$$
(13)

where $k \ge 1$. Lin and Sontag provided a universal control formula with respect to Minkowski ball U_2 (Lin and Sontag, 1991). Malisoff and Sontag

improved the Lin's controller in order to apply for the case of $1 < k \leq 2$ (Malisoff and Sontag, 2000). To construct the controller for the case of $k \geq 1$, we have ganeralized Malisoff's controller. We introduce important results as the followings (N. Kidane and Nishitani, 2005):

Theorem 2. Let V(x) be a local clf for system (6) with input constraint (13), and $a_1 > 0$ be the maximum number such that the condition

$$\inf_{u \in U_k} \left\{ L_f V + L_g V \cdot u \right\} < 0, \qquad \forall \ x \neq 0 \tag{14}$$

is satisfied for all $x \in W = \{x | V(x) < a_1\}$. Then, W is a domain in which the origin is asymptotically stabilizable. If V(x) is a clf, then $a_1 = \infty$ and $W = \mathbb{R}^n$.

Proposition 1. We consider system (6) with an input constraint $u \in \overline{U}_k$, where \overline{U}_k is the closure of U_k . Let V(x) be a local clf for the system. Then, the input

$$u_{i} = \begin{cases} -\frac{|L_{g_{i}}V|^{\frac{1}{k-1}}}{\|L_{g}V\|^{\frac{1}{k-1}}_{\frac{k}{k-1}}} \operatorname{sgn}(L_{g_{i}}V) & (L_{g}V \neq 0) \\ 0 & (L_{g}V = 0) \\ (i = 1, \dots, m) \end{cases}$$
(15)

minimizes the derivative $\dot{V}(x, u)$.

Lemma 2. Let V(x) be a local clf for system (6) with input constraint (13), W be a domain in Theorem 2. We define

$$P(x) = \frac{L_f V}{\|L_g V\|_{\frac{k}{k-1}}}.$$
 (16)

Then,

$$\sup_{x \in \{x \in W | L_g V(x) \neq 0\}} P(x) = 1.$$
(17)

Theorem 3. Let V(x) be a local clf for system (6) with input constraint (13), W be a domain in Theorem 2, P(x) be a function defined by (16), c > 0 and q > 1 are constants. Then, the input

$$u_{i} = -\frac{P + |P| + c \|L_{g}V\|_{q}}{2 + c \|L_{g}V\|_{q}} \cdot \frac{|L_{g_{i}}V|^{\frac{1}{k-1}}}{\|L_{g}V\|^{\frac{1}{k-1}}_{\frac{k}{k-1}}} \operatorname{sgn}(L_{g_{i}}V)$$

$$u_{i} = 0 \qquad (L_{g}V \neq 0)$$

$$(L_{g}V = 0)$$

$$(i = 1, \dots, m)$$

$$(18)$$

asymptotically stabilizes the origin in domain W. If m = 1 or $1 < k < \infty$, the input is continuous on $W \setminus \{0\}$. Moreover, if V(x) has the scp, the input is also continuous at the origin. \Box

If m = 1 or k = 2, input (18) becomes $u = -b_2(x)L_gV^T/||L_gV||_2$ and it causes no chattering.

If $m \neq 1$ and $k \neq 2$, however, input (18) may have chattering.

For example, in the case of $m \neq 1$ and $k = \infty$, input (18) becomes $u_i = -b_2(x)\operatorname{sgn}(L_{g_i}V)$. It is discontinuous on $\{x|L_{g_i}V = 0\}$. In the case of $m \neq 1$ and k = 1, $u_i = 0$ when $|L_{g_i}V| \neq \max_{j=1,\ldots,m} |L_{g_j}V|$, and $u_i = -b_2(x)\operatorname{sgn}(L_{g_i}V)$ when the other case $|L_{g_i}V| = \max_{j=1,\ldots,m} |L_{g_j}V|$. These controllers may cause chattering in inputs.

Therefore, the closed system may not have Carathéodory solutions in the case of $m \neq 1$ and $k \neq 2$. In this paper, we construct a controller that is continuous except the origin; namely, the controlled system has always a Carathéodory solution for each initial state.

4. CONTROLLER DESIGN

The objective of this paper is to design a stabilizing controller that is continuous except the origin in any case of $k \ge 1$. In our previous work (N. Kidane and Nishitani, 2005), we have proposed controller (18). We show the construction scheme briefly.

First, we consider a subspace $\overline{U}'_k \subset \overline{U}_k$ such that \overline{U}'_k is similar to \overline{U}_k , \overline{U}'_k becomes small if P(x) becomes small, and $\overline{U}'_k \to \overline{U}_k$ as $P(x) \to \overline{U}_k$ 1. Second, we design a stabilizing controller by choosing the input that minimizes $\dot{V}(x, u)$ in \bar{U}'_k . Consider the (hyper) surface $Q : L_q V \cdot u = a_2$ such that $\overline{U}_k \cap Q \neq \phi$ and a_2 becomes minimum. When input u coincides contact point between Qand \bar{U}'_k , V(x, u) takes minimum value. Then, the input that minimizes $\dot{V}(x,u)$ in \bar{U}'_k is denoted by the contact point between Q and \bar{U}'_k . In the case of k = 2, a subspace $\overline{U}'_2 \subset \overline{U}_2$ becomes a ball. Hence, the input that minimizes V(x, u) in \overline{U}'_2 (namely, the contact point between Q and \overline{U}_2') moves continuously on the boundary of \bar{U}_2' . On the other hand, in the case of $k = \infty$, a subspace $\bar{U}'_{\infty} \subset \bar{U}_{\infty}$ always becomes a rectangle. Hence, the contact point between Q and \bar{U}'_{∞} jumps from a vertex to another vertex at the moment that the sign of $L_{g_i}V$ changes. This causes chattering phenomenon in inputs.

In this section, we propose a stabilizing controller that is continuous except the origin in any case of $k \geq 1$ as the followings: First, we consider a continuous function \hat{k} and a subspace $\bar{U}'_{\hat{k}} \subset \bar{U}_{\hat{k}}$ that satisfies the following conditions: $\bar{U}'_{\hat{k}}$ is similar to $\bar{U}_{\hat{k}}, \bar{U}'_{\hat{k}}$ becomes a small ball if $P(x) \leq 0$, and $\bar{U}'_{\hat{k}} \to \bar{U}_k$ as $P(x) \to 1$. Second, we stabilizes the system by the input that minimizes $\dot{V}(x, u)$ in $\bar{U}'_{\hat{k}}$ (See Fig. 1). Note that the subset $\bar{U}'_{\hat{k}}$ has to be large enough to hold $\dot{V}(x, u) < 0 \ (\forall \ 0 \neq x \in W)$ under the input constraint $u \in \bar{U}'_{\hat{k}}$.

Fig. 1. The input that minimizes V(x, u) in $U'_{\hat{k}}$

The input that minimizes $\dot{V}(x, u)$ in $\bar{U}'_{\hat{k}}$ can be written as

$$u_i = -b_4(x) |L_{g_i}V|^{\frac{1}{k-1}} \operatorname{sgn}(L_{g_i}V) \quad (i = 1, \dots, m),$$
(19)

where $b_4: \mathbb{R}^n \to \mathbb{R}_{>0}$. We choose a function $b_4(x)$ such that input (19) is continuous on $W \setminus \{0\}$, and it is also continuous at the origin if V(x) has the scp. We define \hat{k} as a monotone increasing or monotone decreasing continuous function such that $\hat{k} = 2$ if $P(x) \leq 0$, and $\hat{k} \to k$ as $P(x) \to 1$. In fact, the monotonicity is not necessary. But, we use $\hat{k} \leq k$ $(k \geq 2)$ and $\hat{k} > k$ $(1 \leq k < 2)$ in the following argument. Note that input constraint (13) and an inequality $\dot{V}(x, u) < 0$ $(\forall 0 \neq x \in W)$ have to be satisfied.

In the case of $k \simeq 1$ or $k \simeq \infty$, input (19) may have chattering because $\bar{U}'_{\hat{k}}$ may become a ball too 'slowly'. 'Fast' transformation of $\bar{U}'_{\hat{k}}$ into a ball is necessary for avoiding chettering phenomenon. Namely, \hat{k} have to become 2 'fast' enough. On the other hand, $\bar{U}'_{\hat{k}}$ has to be large enough to hold $\dot{V}(x,u) < 0$ ($\forall \ 0 \neq x \in W$) under the input constraint $u \in \bar{U}'_{\hat{k}}$. Hence, \hat{k} is limited if $L_f V > 0$. We obtain necessary conditions to hold $\dot{V}(x,u) < 0$ ($\forall \ 0 \neq x \in W$) as the following:

Remark 1. (Choice of \hat{k}). The directional vector of input (19) corresponds to the input that minimizes $\dot{V}(x, u)$ in $\bar{U}_{\hat{k}}$. And input (19) have to satisfy input constraint (13). If $L_g V \neq 0$, the input such that the directional vector corresponds to the input that minimizes $\dot{V}(x, u)$ in $\bar{U}_{\hat{k}}$ and the input exists on the boundary of \bar{U}_k can be written as the following:

$$u_{i} = -\frac{|L_{g_{i}}V|^{\frac{1}{k-1}}}{\|L_{g}V\|^{\frac{1}{k-1}}_{\frac{k}{k-1}}}\operatorname{sgn}(L_{g_{i}}V) \qquad (i = 1, \dots, m).$$
(20)

i) We consider the case of $k \ge 2$. From Lemma 1 and $k \ge \hat{k}$, input (20) achieves

$$\dot{V}(x) \le P \|L_g V\|_{\frac{k}{k-1}} - \|L_g V\|_{\frac{\hat{k}}{k-1}}.$$
(21)

The right hand side of the equation becomes maximum when $|L_{g_1}V| = \cdots = |L_{g_m}V|$ (See Fig. 2). Assigning the values $|L_{g_1}V| = \cdots = |L_{g_m}V|$ into (21), we can achieve the following necessary condition to satisfy $\dot{V}(x, u) < 0$:

$$\hat{k} \ge \frac{k}{1 - k \log_m P}.\tag{22}$$

Therefore, we have to choose \hat{k} such that inequality (22) is satisfied and \hat{k} becomes to 2 quickly enough to occur no chattering in inputs.

Fig. 2. Comparison of norms $(1 \le k_1 < k_2 < k_3)$

ii) We consider the case of $1 \leq k < 2$. From Lemma 1 and $k < \hat{k}$, input (20) achieves

$$\dot{V}(x) \leq \frac{\|L_g V\|_{\frac{k}{k-1}}}{\|L_g V\|_{\frac{k}{k-1}}^{\frac{1}{k-1}}} \left(P\|L_g V\|_{\frac{k}{k-1}}^{\frac{1}{k-1}} - \|L_g V\|_{\frac{k}{k-1}}^{\frac{1}{k-1}} \right).$$
(23)

The term in bracket (·) becomes maximum when $|L_{g_1}V| = \cdots = |L_{g_m}V|$. Assigning the values $|L_{g_1}V| = \cdots = |L_{g_m}V|$ into (23), we get a necessary condition to satisfy $\dot{V}(x, u) < 0$ as the following:

$$\hat{k} \le \frac{k}{1 + k \log_m P}.\tag{24}$$

Therefore, we have to choose \hat{k} such that inequality (24) is satisfied and \hat{k} becomes to 2 quickly enough to avoid chattering in inputs.

Although $b_4(x)$ and \hat{k} are not obtained uniquely, we propose the following selection:

Theorem 4. Let V(x) be a local clf for system (6) with input constraint (13), W be a domain in Theorem 2, P(x) be a function defined by (16), c > 0 and $q \ge 1$ are constants, and $m \ge 2$. We define \hat{k} and \bar{k} as the following:

$$\hat{k} = \begin{cases} \frac{k}{1 - k \log_m \left\{ P + (1 - P)m^{-\frac{|k-2|}{2k}} \right\} \operatorname{sgn}(k-2)} \\ (P > 0) \\ 2 \\ (P \le 0) \\ (P \le 0) \end{cases}$$
(25)

$$\bar{k} = \begin{cases} \hat{k} & (k \ge 2) \\ k & (1 \le k < 2). \end{cases}$$
(26)

Then, the input

$$u_{i} = \frac{-(P+|P|+c||L_{g}V||_{q})}{(P+|P|)\left(1-m^{-\frac{|k-2|}{2k}}\right)+2m^{-\frac{|k-2|}{2k}}+c||L_{g}}$$
$$\cdot \frac{|L_{g_{i}}V|^{\frac{1}{k-1}}}{||L_{g}V||^{\frac{1}{k-1}}}\operatorname{sgn}(L_{g_{i}}V) \qquad (L_{g}V\neq 0)$$
$$u_{i} = 0 \qquad (L_{g}V=0)$$
$$(i = 1, \dots, m)$$
$$(27)$$

asymptotically stabilizes the origin in domain W. and it is continuous on $W \setminus \{0\}$. Moreover, if V(x) has the scp, the input is also continuous at the origin.

Proof 2. In the case of $L_g V = 0$, input constraint (13) is satisfied clearly. From Theorem 2, we get $\dot{V}(x) = L_f V < 0$ for all $0 \neq x \in W$.

We consider the case of $L_g V \neq 0$. From Lemma 1, note that $\|\cdot\|_k \leq \|\cdot\|_{\hat{k}}$ in the case of $k \geq \hat{k}$. From the fact and P(x) < 1, we get

$$\begin{aligned} \|u\|_k &\leq \frac{P + |P| + c \|L_g V\|_q}{P + |P| + (2 - P - |P|) m^{-\frac{|k-2|}{2k}} + c \|L_g V\|_q} \\ &< 1. \end{aligned}$$

Therefore, input constraint (13) is satisfied. If $\delta < 1$, $\|L_g V\|_q < \delta$, and $L_f V < \delta \|L_g V\|_{k/(k-1)}$, then $\|u\|_k < (2+c)m^{\frac{|k-2|}{2k}}\delta$. Furthermore, $\|u\|_k$ can be made as small as desired when δ is taken to be small enough. In the case of $P(x) \leq 0$, the condition $\dot{V}(x) < 0$ is satisfied obviously. We consider the case of 0 < P(x) < 1.

i) In the case of $k \ge 2$, input (27) achieves

$$\dot{V}(x) < (2P + c \|L_g V\|_q) y_1(x)$$

$$/ \left[2 \left\{ P + (1 - P)m^{\frac{2-k}{2k}} \right\} + \|L_g V\|_{\frac{k}{k-1}} \right],$$

where

$$y_1(x) = \left\{ P + (1-P)m^{\frac{2-k}{2k}} \right\} \|L_g V\|_{\frac{k}{k-1}} - \|L_g V\|_{\frac{\hat{k}}{\hat{k}-1}}.$$

 $y_1(x)$ becomes maximum when $|L_{g_1}V| = \cdots = |L_{g_m}V|$. From the values $|L_{g_1}V| = \cdots = |L_{g_m}V|$ and (25), we obtain $y_1(x) < 0$ and $\dot{V}(x) < 0$.

ii) In the case of $1 \le k < 2$, input (27) achieves

$$\dot{V}(x) < (2P + c \|L_g V\|_q) \|L_g V\|_{\frac{k}{k-1}}^{-\frac{1}{k-1}} \|L_g V\|_{\frac{k}{k-1}}$$
$$\cdot y_2(x) \Big/ \left[2 \left\{ P + (1-P)m^{\frac{k-2}{2k}} \right\} + \|L_g V\|_{\frac{k}{k-1}} \right],$$

 $y_2(x) = \left\{ P + (1-P)m^{\frac{k-2}{2k}} \right\} \left\| L_g V \right\|_{\frac{k}{k-1}}^{\frac{1}{k-1}} - \left\| L_g V \right\|_{\frac{k}{k-1}}^{\frac{1}{k-1}}.$

 $V \parallel_q y_2(x)$ becomes maximum when $|L_{g_1}V| = \cdots = |L_{g_m}V|$. From the values $|L_{g_1}V| = \cdots = |L_{g_m}V|$ and (25), we obtain $y_2(x) < 0$ and $\dot{V}(x) < 0$.

Input (27) asymptotically stabilizes the origin in domain W since $\dot{V}(x) < 0 \ (\forall \ 0 \neq x \in W)$

5. SIMULATION

In this section, we consider the same example as (N. Kidane and Nishitani, 2005):

$$\dot{x}_1 = x_1 - 4x_2 + u_1 \dot{x}_2 = x_2 + u_2$$
(28)

with an input constraint $||u||_{\infty} < 1$. We choose a local clf as $V(x) = (x_1^2 + x_2^2)/2$. From (16), we get

$$P = \frac{x_1^2 - 4x_1x_2 + x_2^2}{\|x\|_1}.$$
 (29)

We set c = 1 and q = 1 in (27). Then, the controller

$$u_{i} = \begin{cases} -\frac{P + |P| + ||x||_{1}}{\left(1 - \frac{1}{\sqrt{2}}\right)(P + |P|) + \sqrt{2} + ||x||_{1}} \\ \cdot \frac{|x_{i}|^{\frac{1}{k-1}}}{||x||^{\frac{1}{k-1}}} \operatorname{sgn}(x_{i}) & (x \neq 0) \\ 0 & (x \neq 0) \\ 0 & (x = 0) \\ (i = 1, 2) \\ (30) \end{cases}$$

asymptotically stabilizes the origin in domain $W = \{x | x_1^2 + x_2^2 < 2/9\}$, where

$$\hat{k} = -\frac{1}{\log_2\left\{P + (1-P)\frac{1}{\sqrt{2}}\right\}}.$$

Let $x(0) = (-0.3, 0.3)^T$ be an initial state. Figure 3 and Fig. 4 show the trajectory of the state and the change in the input, respectively. The trajectory converges to zero, and the input constraint $||u||_{\infty} < 1$ is satisfied. In the example of our previous paper (N. Kidane and Nishitani, 2005), we have admited chattering phenomenon in input u_2 . On the hand, Fig. 4 demonstrates continuous responce of the input.

6. CONCLUSION

In this paper, we have proposed a stabilizing controller that is continuous except the origin in any case of $k \geq 1$ as the folloeing: First, we considered a continuous function \hat{k} and a subspace $\bar{U}'_{\hat{k}} \subset \bar{U}_{\hat{k}}$ such that $\bar{U}'_{\hat{k}}$ is similar to

where

Fig. 3. Trajectory with input (30)

Fig. 4. Change in input (30)

 $\bar{U}_{\hat{k}}$ (same shape), $\bar{U}'_{\hat{k}}$ becomes a small ball if $P(x) \leq 0$, and $\bar{U}'_{\hat{k}} \to \bar{U}_k$ as $P(x) \to 1$. Second, we stabilized the system by the input that minimizes $\dot{V}(x, u)$ in $\bar{U}'_{\hat{k}}$. We have obtained necessary conditions to hold $\dot{V}(x, u) < 0$ ($\forall 0 \neq x \in W$). Moreover, we have demonstrated the controller's effectiveness by computer simulation.

REFERENCES

- Bacciotti, A. and L. Rosier (2001). Liapunov functions and stability in control theory. Springer. London.
- Lin, Y. and E. D. Sontag (1991). A universal formula for stabilization with bounded controls. Systems & Control Letters 16, 393–397.
- Lin, Y. and E. D. Sontag (1995). Control-Lyapunov universal formulas for restricted inputs. Control-Theory and Advanced Technology 10, 1981–2004.
- Malisoff, M. and E. D. Sontag (2000). Universal formulas for feedback stabilization with respect to Minkowski balls. *Systems & Control Letters* 40, 247–260.
- N. Kidane, H. Nakamura, Y. Yamashita and H. Nishitani (2005). Controller for a nonlinear system with an input constraint by us-

ing a control lyapunov function i. 16th IFAC World Congress p. submitted.

- Sontag, E. D. (1989). A 'universal' construction of Artstein's theorem on nonlinear stabilization. Systems & Control Letters 13, 117–123.
- Sontag, E. D. and H. J. Sussmann (1995). Nonsmooth control-Lyapunov functions. Proceedings of the 34th Conference on Decision & Control pp. 2799–2805.