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1. INTRODUCTION

We consider a nonlinear system such that inputs
are restricted to the Minkowski ball Uk. Uk is a
subspace of R

m such that the k-norm of inputs is
less than one. Lin and Sontag proposed a universal
control formula with respect to U2 by using a con-
trol Lyapunov function (Lin and Sontag, 1991).
Malisoff and Sontag provided a universal control
formula with respect to Uk, where 1 < k ≤ 2
(Malisoff and Sontag, 2000). We have generalized
the Malisoff’s controller so that it can be applied
in any case of k ≥ 1 (N. Kidane and Nishi-
tani, 2005). However, the generalized controller
may become discontinuous if k = 1 or k = ∞.
Due to discontinuity of the controller, inputs may
have chattering.

In this research, we propose a new control formula
that is continuous except the origin in any case of
k ≥ 1. We show the design scheme briefly.

First, we consider a continuous function k̂(x) and
a subspace Ū ′

k̂
⊂ Ūk̂ such that Ūk̂ is the closure of

Uk̂ Ū ′
k̂

is similar to Ūk̂ (same shape), Ū ′
k̂

becomes
a small ball if P (x) ≤ 0, and Ū ′

k̂
→ Ūk as P (x) →

1. Second, we stabilize the system by the input
that minimizes V̇ (x, u) in Ū ′

k̂
. We also confirm

the effectiveness of the proposed controller by
computer simulation.

2. PRELIMINARY

In this section, we introduce mathematical nota-
tion and some definitions. For a vector x ∈ R

n,
k-norm is defined as

‖x‖k =

(
n∑

i=1

|xi|k
) 1

k

. (1)

We obtain the following lemma:



Lemma 1. Assume that x ∈ R
n and 1 ≤ k1 < k2.

Then,
‖x‖k1 ≥ ‖x‖k2 . (2)

�

Proof 1. Let e ∈ R
n be a vector such that ‖e‖k1 =

1, and f : R
n → R

n be a bijection defined by

f(x) :=
(
|x1|

k1
k2 sgn(x1), . . . , |xn|

k1
k2 sgn(xn)

)T

.

Note that ‖f(e)‖k2 = 1. The norm ‖e‖k2 can be
written as

‖e‖k2 =

(
n∑

i=1

|ei|k2

) 1
k2

=

(
n∑

i=1

|ei|k1 |ei|k2−k1

) 1
k2

.

(3)
From ‖e‖k1 = 1, we get |ei| ≤ 1 and |ei|k2−k1 ≤ 1.
From (3), |ei|k2−k1 ≤ 1, and

∑n
i=1 |ei|k1 = 1, we

obtain ‖e‖k2 ≤ 1. On the other hand, any vector
x ∈ R

n can be written as

x = ‖x‖k1 ē = ‖x‖k2 ê, (4)

where ē ∈ R
n and ê ∈ R

n are vectors such that
‖ē‖k1 = 1 and ‖ê‖k2 = 1. From (4), we get

‖x‖k2 = ‖x‖k1‖ē‖k2 . (5)

From ‖ē‖k2 ≤ 1 and (5), we obtain (2). ‖x‖k1 and
‖x‖k2 are equal if and only if ‖xi‖ = ‖x‖ for some
i ∈ {1, . . . , n}. �

In this paper, we consider the following affine
system:

ẋ = f(x) + g(x)u, (6)

where x ∈ R
n is a state vector and u ∈ U ⊆ R

m

is an input vector. We assume that f : R
n → R

n

and g : R
n → R

n×m are continuous mappings and
f(0) = 0. We use the notation R>0 := (0,∞) and
R≥0 := [0,∞).

Definition 1. (control Lyapunov function). A
smooth proper positive definite function defined
on a neighborhood of the origin X ∈ R

n, V :
X → R≥0 is said to be a local control Lyapunov
function for system (6) if the condition

inf
u∈U

{LfV + LgV · u} < 0 (7)

is satisfied for all x ∈ X , x 
= 0. Moreover, V (x)
is said to be a control Lyapunov function (clf) for
system (6) if V (x) is a function defined on R

n and
condition (7) is satisfied for all x ∈ R

n, x 
= 0. �

Definition 2. (small control property). A (local)
control Lyapunov function is said to satisfy the
small control property (scp) if for any ε > 0, there
is a δ > 0 such that, if x 
= 0 satisfies ‖x‖ < δ,
then there is some u ∈ U with ‖u‖ < ε such that
LfV + LgV · u < 0. �

If there exists no input constraint (U ≡ R
m),

a smooth radially unbounded positive definite
function V : R

n → R≥0 is a clf if and only if

LgV = 0 =⇒ LfV < 0, ∀ x 
= 0. (8)

We define h(x) as the right hand side of system
(6) with a state feedback law u = β(x);

ẋ = f(x) + g(x)β(x) := h(x). (9)

If β(x) is continuous except the origin, the closed
system has always a Carathéodory solution for
each initial state. On the other hand, if β(x)
is not continuous, Carathéodory solution do not
exist. Hence, we associate (9) with a differential
inclusion of the form

ẋ ∈ F (x). (10)

In this paper, we apply the Fillippov’s approach

F (x) =
⋂
ε>0

⋂
µn(N)

co{h(Bε(x)\N)}, (11)

where Bε(x) denotes the open ball of center x and
radius ε, co denotes the convex closure of a set,
and µn is the Lebesgue measure of R

n.

Definition 3. (Lyapunov function). A smooth and
positive definite function defined on a neighbor-
hood of the origin X ⊂ R

n, V : X → R≥0 is
said to be a local Lyapunov function for system
(10) if the following condition is satisfied for all
0 
= x ∈ X :

∂V

∂x
· v < 0, ∀ v ∈ F (x). (12)

Moreover, V (x) is said to be a Lyapunov function
for system (10) if V (x) is a radially unbounded
function defined on R

n and condition (12) is
satisfied for all 0 
= x ∈ R

n. �

Theorem 1. (Bacciotti and Rosier, 2001) Let F be
a set-valued map such that the local existence of
solutions of (10) is insured. If a (local) Lyapunov
function exists, then the origin is (locally) asymp-
totically stabilizable. �

3. PREVIOUS WORK

When there is not any input constraint, Sontag
proposed a universal control formula for a non-
linear system (Sontag, 1989). In this paper, we
consider a nonlinear system such that inputs are
restricted to the Minkowski ball of radius 1;

Uk =

⎧⎨
⎩u ∈ R

m

∣∣∣∣∣∣ ‖u‖k =

(
m∑

i=1

|ui|k
) 1

k

< 1

⎫⎬
⎭ ,

(13)
where k ≥ 1. Lin and Sontag provided a universal
control formula with respect to Minkowski ball
U2 (Lin and Sontag, 1991). Malisoff and Sontag



improved the Lin’s controller in order to apply
for the case of 1 < k ≤ 2 (Malisoff and Sontag,
2000). To construct the controller for the case of
k ≥ 1, we have ganeralized Malisoff’s controller.
We introduce important results as the followings
(N. Kidane and Nishitani, 2005):

Theorem 2. Let V (x) be a local clf for system (6)
with input constraint (13), and a1 > 0 be the
maximum number such that the condition

inf
u∈Uk

{LfV + LgV · u} < 0, ∀ x 
= 0 (14)

is satisfied for all x ∈ W = {x|V (x) < a1}.
Then, W is a domain in which the origin is
asymptotically stabilizable. If V (x) is a clf, then
a1 = ∞ and W = R

n. �

Proposition 1. We consider system (6) with an
input constraint u ∈ Ūk, where Ūk is the closure of
Uk. Let V (x) be a local clf for the system. Then,
the input

ui =

⎧⎪⎪⎨
⎪⎪⎩

− |LgiV | 1
k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV ) (LgV 
= 0)

0 (LgV = 0)
(i = 1, . . . , m)

(15)

minimizes the derivative V̇ (x, u). �

Lemma 2. Let V (x) be a local clf for system (6)
with input constraint (13), W be a domain in
Theorem 2. We define

P (x) =
LfV

‖LgV ‖ k
k−1

. (16)

Then,
sup

x∈{x∈W |LgV (x) �=0}
P (x) = 1. (17)

�

Theorem 3. Let V (x) be a local clf for system (6)
with input constraint (13), W be a domain in
Theorem 2, P (x) be a function defined by (16),
c > 0 and q ≥ 1 are constants. Then, the input

ui = −P + |P | + c‖LgV ‖q

2 + c‖LgV ‖q
· |LgiV | 1

k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV )

(LgV 
= 0)
ui = 0 (LgV = 0)

(i = 1, . . . , m)
(18)

asymptotically stabilizes the origin in domain W .
If m = 1 or 1 < k < ∞, the input is continuous on
W\{0}. Moreover, if V (x) has the scp, the input
is also continuous at the origin. �

If m = 1 or k = 2, input (18) becomes u =
−b2(x)LgV T /‖LgV ‖2 and it causes no chattering.

If m 
= 1 and k 
= 2, however, input (18) may have
chattering.

For example, in the case of m 
= 1 and k = ∞,
input (18) becomes ui = −b2(x) sgn(LgiV ). It
is discontinuous on {x|LgiV = 0}. In the case
of m 
= 1 and k = 1, ui = 0 when |LgiV | 
=
maxj=1,...,m |Lgj V |, and ui = −b2(x) sgn(LgiV )
when the other case |LgiV | = maxj=1,...,m |Lgj V |.
These controllers may cause chattering in inputs.

Therefore, the closed system may not have Carathéodory
solutions in the case of m 
= 1 and k 
= 2. In this
paper, we construct a controller that is continuous
except the origin; namely, the controlled system
has always a Carathéodory solution for each initial
state.

4. CONTROLLER DESIGN

The objective of this paper is to design a sta-
bilizing controller that is continuous except the
origin in any case of k ≥ 1. In our previous work
(N. Kidane and Nishitani, 2005), we have pro-
posed controller (18). We show the construction
scheme briefly.

First, we consider a subspace Ū ′
k ⊂ Ūk such

that Ū ′
k is similar to Ūk, Ū ′

k becomes small if
P (x) becomes small, and Ū ′

k → Ūk as P (x) →
1. Second, we design a stabilizing controller by
choosing the input that minimizes V̇ (x, u) in Ū ′

k.
Consider the (hyper) surface Q : LgV · u = a2

such that Ūk ∩ Q 
= φ and a2 becomes minimum.
When input u coincides contact point between Q
and Ū ′

k, V̇ (x, u) takes minimum value. Then, the
input that minimizes V̇ (x, u) in Ū ′

k is denoted by
the contact point between Q and Ū ′

k. In the case
of k = 2, a subspace Ū ′

2 ⊂ Ū2 becomes a ball.
Hence, the input that minimizes V̇ (x, u) in Ū ′

2

(namely, the contact point between Q and Ū ′
2)

moves continuously on the boundary of Ū ′
2. On

the other hand, in the case of k = ∞, a subspace
Ū ′
∞ ⊂ Ū∞ always becomes a rectangle. Hence,

the contact point between Q and Ū ′
∞ jumps from

a vertex to another vertex at the moment that
the sign of LgiV changes. This causes chattering
phenomenon in inputs.

In this section, we propose a stabilizing controller
that is continuous except the origin in any case
of k ≥ 1 as the followings: First, we consider
a continuous function k̂ and a subspace Ū ′

k̂
⊂

Ūk̂ that satisfies the following conditions: Ū ′
k̂

is
similar to Ūk̂, Ū ′

k̂
becomes a small ball if P (x) ≤ 0,

and Ū ′
k̂
→ Ūk as P (x) → 1. Second, we stabilizes

the system by the input that minimizes V̇ (x, u) in
Ū ′

k̂
(See Fig. 1). Note that the subset Ū ′

k̂
has to be

large enough to hold V̇ (x, u) < 0 (∀ 0 
= x ∈ W )
under the input constraint u ∈ Ū ′

k̂
.



 -1  -0.5 0 0.5 1
 -1.5

 -1

 -0.5

0

0.5

1

1.5

2

u
1

u
2

 -1  -0.5 0 0.5 1
 -1.5

 -1

 -0.5

0

0.5

1

1.5

2

u
1

u
2

(1) k=1 (2) k is infinity

Fig. 1. The input that minimizes V̇ (x, u) in U ′
k̂

The input that minimizes V̇ (x, u) in Ū ′
k̂

can be
written as

ui = −b4(x)|LgiV | 1
k̂−1 sgn(LgiV ) (i = 1, . . . , m),

(19)
where b4 : R

n → R>0. We choose a function b4(x)
such that input (19) is continuous on W\{0}, and
it is also continuous at the origin if V (x) has
the scp. We define k̂ as a monotone increasing
or monotone decreasing continuous function such
that k̂ = 2 if P (x) ≤ 0, and k̂ → k as P (x) → 1.
In fact, the monotonicity is not necessary. But, we
use k̂ ≤ k (k ≥ 2) and k̂ > k (1 ≤ k < 2) in the
following argument. Note that input constraint
(13) and an inequality V̇ (x, u) < 0 (∀ 0 
= x ∈ W )
have to be satisfied.

In the case of k � 1 or k � ∞, input (19) may
have chattering because Ū ′

k̂
may become a ball too

‘slowly’. ‘Fast’ transformation of Ū ′
k̂

into a ball
is necessary for avoiding chettering phenomenon.
Namely, k̂ have to become 2 ‘fast’ enough. On
the other hand, Ū ′

k̂
has to be large enough to

hold V̇ (x, u) < 0 (∀ 0 
= x ∈ W ) under the
input constraint u ∈ Ū ′

k̂
. Hence, k̂ is limited if

LfV > 0. We obtain necessary conditions to hold
V̇ (x, u) < 0 (∀ 0 
= x ∈ W ) as the following:

Remark 1. (Choice of k̂). The directional vector
of input (19) corresponds to the input that mini-
mizes V̇ (x, u) in Ūk̂. And input (19) have to satisfy
input constraint (13). If LgV 
= 0, the input
such that the directional vector corresponds to the
input that minimizes V̇ (x, u) in Ūk̂ and the input
exists on the boundary of Ūk can be writtten as
the following:

ui = − |LgiV | 1
k̂−1

‖LgV ‖
1

k̂−1
k

k̂−1

sgn(LgiV ) (i = 1, . . . , m).

(20)

i) We consider the case of k ≥ 2. From Lemma 1
and k ≥ k̂, input (20) achieves

V̇ (x) ≤ P‖LgV ‖ k
k−1

− ‖LgV ‖ k̂

k̂−1
. (21)

The right hand side of the equation becomes
maximum when |Lg1V | = · · · = |LgmV | (See Fig.
2). Assigning the values |Lg1V | = · · · = |LgmV |
into (21), we can achieve the following necessary
condition to satisfy V̇ (x, u) < 0:

k̂ ≥ k

1 − k logm P
. (22)

Therefore, we have to choose k̂ such that inequal-
ity (22) is satisfied and k̂ becomes to 2 quickly
enough to occur no chattering in inputs.

 -1.5  -1  -0.5 0 0.5 1 1.5
 -1.5

 -1

 -0.5

0

0.5

1

1.5

u
1

u
2

Uk1

Uk2

Uk3

Fig. 2. Comparison of norms (1 ≤ k1 < k2 < k3)

ii) We consider the case of 1 ≤ k < 2. From
Lemma 1 and k < k̂, input (20) achieves

V̇ (x) ≤
‖LgV ‖ k

k−1

‖LgV ‖
1

k̂−1
k

k̂−1

(
P‖LgV ‖

1
k̂−1

k

k̂−1

− ‖LgV ‖
1

k̂−1
k̂

k̂−1

)
.

(23)
The term in bracket (·) becomes maximum when
|Lg1V | = · · · = |LgmV |. Assigning the values
|Lg1V | = · · · = |LgmV | into (23), we get a
necessary condition to satisfy V̇ (x, u) < 0 as the
following:

k̂ ≤ k

1 + k logm P
. (24)

Therefore, we have to choose k̂ such that inequal-
ity (24) is satisfied and k̂ becomes to 2 quickly
enough to avoid chattering in inputs.

Although b4(x) and k̂ are not obtained uniquely,
we propose the following selection:

Theorem 4. Let V (x) be a local clf for system (6)
with input constraint (13), W be a domain in
Theorem 2, P (x) be a function defined by (16),
c > 0 and q ≥ 1 are constants, and m ≥ 2. We
define k̂ and k̄ as the following:

k̂ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k

1 − k logm

{
P + (1 − P )m− |k−2|

2k

}
sgn(k − 2)

(P > 0)
2 (P ≤ 0)

(25)

k̄ =
{

k̂ (k ≥ 2)
k (1 ≤ k < 2).

(26)



Then, the input

ui =
−(P + |P | + c‖LgV ‖q)

(P + |P |)
(
1 − m− |k−2|

2k

)
+ 2m− |k−2|

2k + c‖LgV ‖q

· |LgiV | 1
k̂−1

‖LgV ‖
1

k̂−1
k̄

k̂−1

sgn(LgiV ) (LgV 
= 0)

ui = 0 (LgV = 0)
(i = 1, . . . , m)

(27)

asymptotically stabilizes the origin in domain W .
and it is continuous on W\{0}. Moreover, if V (x)
has the scp, the input is also continuous at the
origin.

Proof 2. In the case of LgV = 0, input constraint
(13) is satisfied clearly. From Theorem 2, we get
V̇ (x) = LfV < 0 for all 0 
= x ∈ W .

We consider the case of LgV 
= 0. From Lemma
1, note that ‖ · ‖k ≤ ‖ · ‖k̂ in the case of k ≥ k̂.
From the fact and P (x) < 1, we get

‖u‖k ≤ P + |P | + c‖LgV ‖q

P + |P | + (2 − P − |P |)m− |k−2|
2k + c‖LgV ‖q

< 1.

Therefore, input constraint (13) is satisfied. If
δ < 1, ‖LgV ‖q < δ, and LfV < δ‖LgV ‖k/(k−1),

then ‖u‖k < (2 + c)m
|k−2|

2k δ. Furthermore, ‖u‖k

can be made as small as desired when δ is taken
to be small enough. In the case of P (x) ≤ 0,
the condition V̇ (x) < 0 is satisfied obviously. We
consider the case of 0 < P (x) < 1.

i) In the case of k ≥ 2, input (27) achieves

V̇ (x) < (2P + c‖LgV ‖q) y1(x)/[
2
{
P + (1 − P )m

2−k
2k

}
+ ‖LgV ‖ k

k−1

]
,

where

y1(x) =
{
P + (1 − P )m

2−k
2k

}
‖LgV ‖ k

k−1

− ‖LgV ‖ k̂

k̂−1

.

y1(x) becomes maximum when |Lg1V | = · · · =
|LgmV |. From the values |Lg1V | = · · · = |LgmV |
and (25), we obtain y1(x) < 0 and V̇ (x) < 0.

ii) In the case of 1 ≤ k < 2, input (27) achieves

V̇ (x) < (2P + c‖LgV ‖q) ‖LgV ‖−
1

k̂−1
k

k̂−1

‖LgV ‖ k̂

k̂−1

· y2(x)
/[

2
{
P + (1 − P )m

k−2
2k

}
+ ‖LgV ‖ k

k−1

]
,

where

y2(x) =
{
P + (1 − P )m

k−2
2k

}
‖LgV ‖

1
k̂−1

k

k̂−1

− ‖LgV ‖
1

k̂−1
k̂

k̂−1

.

y2(x) becomes maximum when |Lg1V | = · · · =
|LgmV |. From the values |Lg1V | = · · · = |LgmV |
and (25), we obtain y2(x) < 0 and V̇ (x) < 0.

Input (27) asymptotically stabilizes the origin in
domain W since V̇ (x) < 0 (∀ 0 
= x ∈ W ) �

5. SIMULATION

In this section, we consider the same example as
(N. Kidane and Nishitani, 2005):

ẋ1 = x1 − 4x2 + u1

ẋ2 = x2 + u2
(28)

with an input constraint ‖u‖∞ < 1. We choose a
local clf as V (x) = (x2

1 +x2
2)/2. From (16), we get

P =
x2

1 − 4x1x2 + x2
2

‖x‖1
. (29)

We set c = 1 and q = 1 in (27). Then, the
controller

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− P + |P | + ‖x‖1(
1 − 1√

2

)
(P + |P |) +

√
2 + ‖x‖1

· |xi|
1

k̂−1

‖x‖
1

k̂−1
k̂

k̂−1

sgn(xi) (x 
= 0)

0 (x = 0)
(i = 1, 2)

(30)

asymptotically stabilizes the origin in domain
W = {x|x2

1 + x2
2 < 2/9}, where

k̂ = − 1

log2

{
P + (1 − P ) 1√

2

} .

Let x(0) = (−0.3, 0.3)T be an initial state. Figure
3 and Fig. 4 show the trajectory of the state and
the change in the input, respectively. The trajec-
tory converges to zero, and the input constraint
‖u‖∞ < 1 is satisfied. In the example of our
previous paper (N. Kidane and Nishitani, 2005),
we have admited chattering phenomenon in input
u2. On the hand, Fig. 4 demonstrates continuous
responce of the input.

6. CONCLUSION

In this paper, we have proposed a stabilizing
controller that is continuous except the origin
in any case of k ≥ 1 as the folloeing: First,
we considered a continuous function k̂ and a
subspace Ū ′

k̂
⊂ Ūk̂ such that Ū ′

k̂
is similar to
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Ūk̂ (same shape), Ū ′
k̂

becomes a small ball if
P (x) ≤ 0, and Ū ′

k̂
→ Ūk as P (x) → 1. Sec-

ond, we stabilized the system by the input that
minimizes V̇ (x, u) in Ū ′

k̂
. We have obtained nec-

essary conditions to hold V̇ (x, u) < 0 (∀ 0 
=
x ∈ W ). Moreover, we have demonstrated the
controller’s effectiveness by computer simulation.
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