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Abstract: In recent research we find that the policy iteration algorithm for Markov
decision processes (MDPs) is a natural consequence of the performance difference
formula that compares the difference of the performance of two different policies.
In this paper, we extend this idea to the bias-optimal policy of MDPs. We first
derive a formula that compares the biases of any two policies which have the same
gains, and then we show that a policy iteration algorithm leading to a bias-optimal
policy follows naturally from this bias difference formula. Our results extend
those in (Lewis & Puterman, 2001) to the multichain case and provide a simple
and intuitive explanation for the mathematics in (Veinott, 1966; Veinott, 1969).
The results also confirm the idea that the solutions to performance (including
bias) optimal problems can be obtained from performance sensitivity formulas.
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1. INTRODUCTION

The research of this paper is a continuation of the
recent research on performance optimization of
discrete event dynamic systems with a sensitivity
point of view (Cao, 2000; Cao & Guo, 2004). It is
motivated by the previously established results.
In particular, it is shown in (Cao, 2000; Cao,
2004) that the policy iteration algorithm for gain-
optimal problems in Markov decision processes
(MDPs) follows naturally from the performance
difference formula.

While the gain-optimal policies optimize the
steady-state performance, they ignore the sys-
tem’s transient performance. Therefore, further
performance criteria such as the bias optimality
need to be studied. A bias-optimal policy not only
optimizes the average reward, but also maximizes
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the total expected reward starting from any initial
state. In this paper, we show that following the
same approach as we did for the gain-optimal
problem (Cao, 2004), a bias-optimal policy itera-
tion algorithm for multichain MDPs can be easily
derived from the bias difference formula.

The existing works on bias optimality include
(Lewis, 2001; Veinott, 1966; Veinott, 1969). While
Lewis provided a solution to the unichain case and
left the multichain case unsolved, Veinott’s early
works (Veinott, 1966; Veinott, 1969) did provide
a nice solution to the problem. However, for some
reasons Veinott’s work did not receive its deserved
attention in the literature.

The contributions of this paper are as follows.
First, this work extends our sensitivity-based opti-
mization approach to bias optimality. It confirms
our belief that policy iteration algorithms follow
naturally from the performance (gain or bias)
difference formulas and therefore provides a new



insight to the optimization problem. Second, this
work provides a simple (almost the same as the
gain-optimal problem) and intuitive approach to
the bias optimality problem, leading to a clear
explanation of Veinott’s work; we hope that our
work may help to popularize Veinott’s results.

The rest of the paper is organized as follows. In
Section 2, we briefly review the concepts and the
results of bias for multichain MDPs. In Section
3, we derive the bias difference formula for multi-
chain Markov processes. In Section 4, we show the
standard policy iteration algorithm can be derived
using the bias difference formula in a clear and
intuitive way. In Section 5, we treat the ergodic
chains as a special case and obtain some simple
and neat results. Section 6 concludes the paper
with some discussions.

2. FUNDAMENTAL THEORY

Consider a multichain Markov process {Xn, n =
0, 1, · · ·} defined on a finite state space S =
{1, 2, · · · ,M}. Let P = [p(i, j)] be the state
transition probability matrix. The reward at state
s is r(s). We have Pe = e, with e = (1, · · · , 1)T

being a vector whose all components are one.

The long-run average performance is defined as a
vector η with components

η(s) = lim
N→∞

1
N

E

{
N−1∑
n=0

r(Xn)|X0 = s

}
(1)

Thus, we have

η = lim
N→∞

1
N

{
N−1∑
n=0

Pnr

}
= P ∗r (2)

where r = (r(1), · · · , r(M))T , “T” denotes trans-
pose, and P ∗ = limN→∞

1
N

∑N−1
n=0 Pn is the Ce-

saro limit. We can easily prove (A.4 in (Puterman,
1994)) that P ∗e = e and

PP ∗ = P ∗P = P ∗P ∗ = P ∗. (3)

From (2) and (3), we can get

Pη = P ∗η = η. (4)

The potential g = (g(1), · · · , g(M))T is defined by
the Poisson equation

(I − P )g + η = r. (5)

If g satisfies (5), then so does g + u, where u
satisfies (I−P )u = 0. For example, we can choose
u = ce with c being any constant.

We may choose c such that P ∗g = 0. Such a
potential is called a bias. Since in this paper we

use bias as the potential, we use the same notation
g to denote both the bias and the potential. (5)
becomes (I − P + P ∗)g = r − η. From Theorem
A.7 of (Puterman, 1994), the matrix (I−P +P ∗)
is nonsingular and if P is aperiodic,

(I − P + P ∗)−1 =
∞∑

n=0

(P − P ∗)n. (6)

If P is periodic, we have

(I − P + P ∗)−1 = lim
N→∞

1
N

N−1∑
n=0

n∑
i=0

(P − P ∗)i

which is also a Cesaro limit. For the simplicity in
expression, we assume that P is aperiodic in this
paper. If P is periodic, we just need to replace the
normal limit with Cesaro limit and all results in
this paper are hold for periodic case. Thus,

g = (I − P + P ∗)−1(r − η) (7)

=
∞∑

n=0

(P − P ∗)n(r − η) =
∞∑

n=0

Pn(r − η) (8)

And g(i) =
∑∞

n=0 E[r(Xn) − η|X0 = i], we can
estimate g by this equation on a single sample
path without knowing P .

In MDPs (Puterman, 1994), there is an action
space A consisting of all available actions. As ⊆ A
is the set of available actions in state s ∈ S. If the
system is at state s, an action a ∈ As can be taken
and applied to the system. The action determines
the state transition probabilities. When action a is
taken at state s, the state transition probability
distribution is denoted as pa(s, j), j ∈ S which
determine the system state at the next decision
epoch. The reward also depends on action and is
denoted as r(s, a).

A stationary deterministic policy is a mapping
from S to A, denoted as d : a = d(s), which de-
termines the action taken at state s. We will only
consider stationary deterministic policies. Denote
D as the set of all stationary deterministic poli-
cies. If policy d is adopted, the state transition
probability matrix is Pd = [pd(i)(i, j)]Mi,j=1. Since
a policy corresponds to a state transition probabil-
ity matrix, we sometimes refer to a state transition
probability matrix as a policy.

We will use subscript “d” to denote all the quan-
tities associated with policy d; e.g., Pd, rd, ηd, gd,
wd etc. In particular, the gain (long-run average
expected reward) of policy d ∈ D is defined as

ηd(s) = lim
N→∞

1

N
Ed

s

{
N−1∑
n=0

r(Xn, d(Xn))|X0 = s

}

= lim
N→∞

1

N

{
N−1∑
n=0

(Pd)nrd(s)

}
= (Pd)∗rd(s) (9)



where

rd = [r(1, d(1)), r(2, d(2)), · · · , r(M,d(M))]T

and (Pd)∗rd(s) denotes the sth component of
vector (Pd)∗rd.

We say policy d∗ is a gain-optimal policy if

ηd∗(s) ≥ ηd(s), for all s ∈ S and d ∈ D.

And η∗ = ηd∗ is the optimal gain. Denote D−1 ⊆
D as the set of all gain-optimal policies.

We refer to the following equations of η and g

max
a∈As

{
∑
j∈S

pa(s, j)η(j)− η(s)} = 0 and

max
a∈Bs

{r(s, a)− η(s) +
∑
j∈S

pa(s, j)g(j)− g(s)} = 0,

where Bs = {a ∈ As :
∑

j∈S pa(s, j)η(j)− η(s) =
0}, as the multichain optimality equations. In a
matrix form, they are

max
d∈D

{(Pd − I)η} = 0 and (10)

max
d∈E

{rd − η + (Pd − I)g} = 0, (11)

where E = {d ∈ D : Pdη = η}.

It is well known that a policy whose corresponding
η and g satisfy the multichain optimality equa-
tions is a gain-optimal policy, and there exists
a gain-optimal policy satisfying the multichain
optimality equations. This implies that the opti-
mal gain always satisfies (10). However, it is also
known that there may exist gain-optimal policies
that do not satisfy the optimality equation (11)
(Puterman, 1994).

From (9), we can see that the gain (average re-
ward) criterion focuses on the limiting or steady-
state behavior of a system and ignores transient
performance. Therefore, the gain optimality crite-
rion is under-selective. We need a more selective
optimality criterion - bias optimality which can
include the transient performance.

We say policy π∗ is a bias-optimal policy if

gπ∗(s) ≥ gπ(s), for all s ∈ S and π ∈ D−1.

That is, a bias-optimal policy π∗ is a policy with
maximal bias among all the gain-optimal policies.
And g∗ = gπ∗ is the optimal bias. From (8), we can
know that a bias-optimal policy is to maximize the
total expected reward.

As we have emphasized, the policy iteration for
gain-optimal policies is based on the performance
difference equation:

η′ − η = (P ′)∗(P ′g + r′ − Pg − r) + [(P ′)∗ − I]η. (12)

This can be obtained by left-multiplying (P ′)∗ on
the both sides of (5).

3. BIAS DIFFERENCE

Throughout, we assume a model which satisfies
the following assumptions:
1. stationary rewards and transition probabilities,
2. finite rewards, |r(s, a)| < ∞∀ a ∈ As and s ∈ S,
3. state space S and action space A are both finite.

For two vectors u and v defined on state space S,
we define u = v if u(i) = v(i) for all i ∈ S; u ≥ v
if u(i) ≥ v(i) for all i ∈ S; u � v if u ≥ v and
u(i) > v(i) for at least one i ∈ S.

Lemma 1. Let policy d∗ be gain optimal, and η∗

be the corresponding optimal gain. Then for any
stationary deterministic policy d ∈ D, we have

(a) Pdη
∗ ≤ η∗.

(b) If Pdη
∗ � η∗, then ηd � η∗.

(c) If d ∈ D−1 , then Pdη
∗ = (Pd)∗η∗ = η∗.

Proof. (a) is a direct consequence of (10). For
(b), note that from (4) and ηd ≤ η∗, we have ηd =
Pdηd ≤ Pdη

∗ � η∗. Now we prove (c). Assume
Pdη

∗ 6= η∗. From part (a), we have Pdη
∗ ≤ η∗.

Thus, Pdη
∗ � η∗. From part (b), we have ηd � η∗.

This conflicts with the fact that policy d is also
gain optimal. Thus, Pdη

∗ = η∗. Hence, (Pd)nη∗ =
η∗ for any integer n. Then (Pd)∗η∗ = η∗ holds
noting (Pd)∗ = limN→∞

1
N

∑N−1
n=0 (Pd)n. 2 In

order to derive the bias difference formula, define
the bias offset of policy P as

w = −g + Pw. (13)

Again, the solution to (13) is not unique and we
may set P ∗w = 0. Thus we can rewrite (13) as

(I − P + P ∗)w = −g.

Therefore,

w =−(I − P + P ∗)−1g = −
∞∑

n=0

(P − P ∗)ng

=−
∞∑

n=0

Png = −
∞∑

n=0

(n + 1)Pn(r − η). (14)

And w(i) = −
∑∞

n=0(n + 1)E[r(Xn) − η|X0 = i].
Comparing (8) and (14), (14) is almost the same
as (8) if we replace (r − η) in (7) with −g. This
point is very important in estimating w. Therefore
we can also estimate w on a single sample path
without knowing P .

Now we derive the bias difference formula.

Lemma 2. For policies d and π, if ηd = ηπ, then

gd − gπ =
∞∑

n=0

(Pd)n(Pdgπ + rd − Pπgπ − rπ)

+(Pd)∗(Pd − Pπ)wπ. (15)



Proof. Denote xd
π = Pdgπ + rd−Pπgπ− rπ. From

(5) and ηd = ηπ, we have

gd − gπ = Pdgd + rd − ηd − (Pπgπ + rπ − ηπ)

= Pdgπ + rd − Pπgπ − rπ + Pd(gd − gπ).

From (13), we have gπ = Pπwπ−wπ. Left-multiply
(Pd)∗ to both sides of this equation, we get

(Pd)∗gπ = (Pd)∗(Pπ − Pd)wπ. (16)

From (16) and (Pd)∗gd = 0,

(I−Pd+(Pd)∗)(gd−gπ) = xd
π +(Pd)∗(Pd−Pπ)wπ.

From (6) and [I−Pd +(Pd)∗]−1(Pd)∗ = (Pd)∗, we
have

gd − gπ = [I − Pd + (Pd)∗]−1xd
π + (Pd)∗(Pd − Pπ)wπ

=

∞∑
n=0

(Pd)nxd
π −

∞∑
n=1

(Pd)∗xd
π + (Pd)∗(Pd − Pπ)wπ . (17)

Next, from (5), (3) and (9), we have

(Pd)∗xd
π = (Pd)∗(Pdgπ + rd − ηπ − gπ)

= (Pd)∗rd − (Pd)∗ηπ = ηd − ηd = 0.

The lemma then follows directly from (17). 2

Now we will use the above lemma to prove the
following theorem.

Theorem 1. Suppose d∗ is any gain-optimal policy
and the corresponding quantities are P , r, η∗,
g and w. If another policy d ∈ D satisfies the
following three conditions:
(a) Pdη

∗ = η∗,
(b) Pdg + rd ≥ Pg + r, and
(c) Pdw(i) ≥ Pw(i) when Pdg(i)+rd(i) = Pg(i)+
r(i) for some i ∈ S,
then ηd = η∗ and gd ≥ g.

Proof. Let x = Pdg+rd−(Pg+r) and y = Pdw−
Pw. From condition (a), condition (b), Lemma
1(c) and (12), we can know

ηd − η∗ = (Pd)∗x + [(Pd)∗ − I]η∗ = (Pd)∗x ≥ 0.

Since η∗ is the optimal gain, policy d is also a
gain-optimal policy, i.e. ηd = η∗. Then (Pd)∗x =
0. Noting x ≥ 0 and the components of (Pd)∗

are positive on all recurrent states, we can have
x(i) = 0, ∀ recurrent state i under policy d, and
so it follows from condition (c) that y(i) ≥ 0,
∀ recurrent state under policy d. Noting that
(Pd)∗(i, j) = 0 where i ∈ S and j is a transient
state under policy d, we can have (Pd)∗y ≥ 0.
Refer to Lemma 2,

gd − g =
∞∑

n=0

(Pd)nx + (Pd)∗y ≥
∞∑

n=0

(Pd)nx.

Noting that Pd is a non-negative matrix and x ≥
0, gd ≥ g. 2

4. POLICY ITERATION ALGORITHM

From Theorem 1, we can easily derive the bias
optimality conditions:

Theorem 2. Let P̂ , r̂, η̂, ĝ and ŵ be the transition
probability matrix, the reward, the gain, the bias
and the bias offset of a policy d̂ ∈ D. Suppose the
following “ bias optimality conditions” hold:

η̂(i) = max
a∈Ai

{
∑
j∈S

pa(i, j)η̂(j)}, (18)

η̂(i) + ĝ(i) = max
a∈Bi

{r(i, a) +
∑
j∈S

pa(i, j)ĝ(j)}, (19)

ĝ(i) + ŵ(i) = max
a∈Ci

{
∑
j∈S

pa(i, j)ŵ(j)}, (20)

∀ i ∈ S, where Bi := {a ∈ Ai|
∑

j∈S pa(i, j)η̂(j) =
η̂(i)}, Ci := {a ∈ Bi| η̂(i) + ĝ(i) = r(i, a) +∑

j∈S pa(i, j)ĝ(j)}. Then η̂ ≥ ηd for all d ∈ D

and ĝ ≥ gd for all d ∈ D−1; that is, policy d̂ is
bias optimal.

Proof. (18), (19) and (20) can be restated in
matrix forms as

η̂ ≥ Pdη̂ ∀ d ∈ D, (21)

η̂ + ĝ ≥ rd + Pdĝ ∀ d ∈ E, (22)

ĝ + ŵ ≥ Pdŵ ∀ d ∈ F, (23)

where E
.= {d ∈ D : Pdη̂ = η̂} and F

.= {d ∈ E :
η̂+ ĝ = Pdĝ+rd}. First, d̂ is gain optimal because
η̂ and ĝ satisfy the gain optimality equations (18)
and (19) (same as (10) and (11))(Cao, 2004).
Next, We will prove that ĝ ≥ gd for all d ∈ D−1

in the following. For ∀ d ∈ D−1, we have proved
before Pdη̂ = η̂ in Lemma 1 and (Pd)∗(Pdĝ + rd−
P̂ ĝ − r̂) = 0. Together with condition (22), we
have η̂ + ĝ = P̂ ĝ + r̂ ≥ rd + Pdĝ, ∀ d ∈ D−1

and η̂(i) + ĝ(i) = rd(i) + Pdĝ(i), ∀ recurrent state
i under policy d. Together with condition (23),
(Pd)∗(Pd − P̂ )ŵ = (Pd)∗(Pdŵ − ĝ − ŵ) ≤ 0. By
Lemma 2,

gd − ĝ =
∞∑

n=0

(Pd)n(Pdĝ + rd − P̂ ĝ − r̂)

+(Pd)∗(Pd − P̂ )ŵ ≤ 0.

As a result, ĝ ≥ gd, ∀ d ∈ D−1. 2

Following the same procedure as for the gain-
optimal problem, by Theorem 2, from any gain-
optimal policy we can construct another gain-
optimal policy whose bias is larger if such a policy
exists. For a given d ∈ D−1, i ∈ S and a ∈ Bi, let

Hd(i, a) := r(i, a) +
∑
j∈S

pa(i, j)gd(j), and (24)



Ad(i) :=a ∈ Bi :

Hd(i, a) > Hd(i, d(i)); or∑
j∈S

pa(i, j)wd(j) >
∑
j∈S

pd(i, j)wd(j)

when Hd(i, a) = Hd(i, d(i))

 .(25)

We then define an improvement policy h (depend-
ing on d) as follows:{

h(i) ∈ Ad(i) if Ad(i) 6= ∅;
h(i) = d(i) if Ad(i) = ∅. (26)

Note that such a policy may not be unique, since
there may be more than one action in Ad(i) for
some state i ∈ S. Let

xh
d : = rh + Phgd − rd − Pdgd,

yh
d : = Phwd − Pdwd.

Theorem 3. For any given d ∈ D−1, let h be
defined as in (26). Then

(a) gh ≥ gd, and yh
d (i) ≥ 0 for all recurrent states

i under Ph.

(b) If yh
d (i) > 0 for some recurrent state i under

Ph, then gh � gd.

(c) If rh + Phgd 6= rd + Pdgd, then gh � gd.

(d) If gh = gd and h 6= d, then wh � wd.

Proof. (a) We take policy d and policy h as
policy d∗ and policy d in Theorem 1, respectively.
Then by the construction in (25) and (26), the
conditions (a), (b) and (c) in Theorem 1 hold.
Thus, it follows from Theorem 1 that gh ≥ gd.
Moreover, as in the proof of Theorem 1, we have
yh

d (i) ≥ 0 for all recurrent states i under policy h;
thus, part (a) follows.
(b) Since xh

d ≥ 0, yh
d ≥ 0 and condition in

(b), we have (Ph)∗yh
d � 0, and so gh − gd =∑∞

n=0(Ph)nxh
d + (Ph)∗yh

d � 0. Then part (b)
follows.
(c) By part (a), it suffices to prove that gh 6= gd.
Suppose that gh = gd. Then

Phgd + rh = Phgh + rh = η∗ + gh = Pdgd + rd

which contradicts to the given condition. There-
fore, part (c) is proved.
(d) Since gh = gd, rh + Phgd = rd + Pdgd follows
by part (c). Then Phwd � Pdwd holds by (25) and
h 6= d. Noting gh − gd = (Ph)∗(Ph − Pd)wd = 0,
we have Phwd(i) = Pdwd(i) ∀ recurrent state i
under policy h. From (25) and (26),

h(i) = d(i),∀ recurrent state i under h. (27)

we define u as u = −w + Pu. Just the same as
Lemma 2, we have

wh − wd =

∞∑
n=0

(Ph)n(Ph − Pd)wd + (Ph)∗(Ph − Pd)ud.

By (27), we can get (Ph)∗(Ph − Pd)ud = 0. Then
wh − wd =

∑∞
n=0(Ph)n(Ph − Pd)wd ≥ (Ph −

Pd)wd � 0. 2

With Theorem 3, we can state the (standard) Bias
Optimality Policy Iteration Algorithm as follows:
1. Set n = 0 and select an arbitrary gain-optimal
policy d0 ∈ D−1.
2. (Policy evaluation) Obtain gdn and wdnby
solving

rdn
− η∗ + (Pdn

− I)g = 0 (28)

−g + (Pdn − I)w = 0 (29)

subject to (Pdn
)∗w = 0.

3. (Policy improvement) Obtain policy dn+1 as
the policy h in (25) and (26). setting dn+1(s) =
dn(s) if possible.
4.If dn+1 = dn, stop and set d∗ = dn and g∗ = gdn

;
otherwise increment n by 1 and return to step 2.

Theorem 3 can be used to compare the biases of
two gain-optimal policies and to prove the anti-
cycling property in the policy iteration procedure.
The existence of the solution to the optimality
equations can be proved by construction as shown
in Theorem 4.

Theorem 4. The Policy Iteration Algorithm stops
at a bias-optimal policy in a finite number of
iterations.

Proof. By Theorem 3(a), gdn+1 ≥ gdn
. That

is, as n increases, gdn
either increases or stays

the same. Furthermore, by Theorem 3(d), when
gdn stays the same, wdn increases. Thus, any two
policies in the sequence of dn, n = 0, 1, · · · , either
have different bias or have different bias offset.
That is, every policy in the iteration sequence is
different. Since the number of policies is finite,
the iteration must stop after a finite number of
iterations. Suppose it stops at a policy denoted as
d∗. Then d∗ must satisfy the optimality conditions
(18), (19) and (20) because otherwise for some i
the set Ad∗(i) in (25) is non-empty and we can find
the next improved policy in the policy iteration.
Thus, by Theorem 2, policy d∗ is bias optimal. 2

5. THE ERGODIC CASE

For an ergodic Markov chain, we define θ =
(θ(1), · · · , θ(M)) be the (row) vector representing
its steady-state probabilities. Then θe = 1. The
steady-state probability flow balance equation is
θ = θP . The gain η(i) is a constant function on
the state space S and we write it as η = θr. We
have P ∗ = eθ, and the gain-difference equation
(12) becomes

η′ − η = θ′(P ′g + r′ − Pg − r). (30)



Lemma 3. Suppose Markov chain is ergodic and
policy d∗ is any gain-optimal policy. The corre-
sponding quantities are P, θ, r, η∗ and g with
respect to d∗. Any another gain-optimal policy
d ∈ D−1 must satisfy Pdg + rd = Pg + r.

Proof. Take ηd as η′ and η∗ as η in (30), we have

ηd − η∗ = θd(Pdg + rd − Pg − r).

Because ηd = η∗, we have

θd(Pdg + rd − Pg − r) = 0.

Assume that this lemma does not hold, and with-
out loss of generality, we assume that there exists
a policy π and a state i ∈ S such that

Pπg(i) + rπ(i)− Pg(i)− r(i) > 0.

Then we can construct another policy Pε. Pε is
the same as P except ith row, which is Pε(i, j) =
Pπ(i, j), j = 1, 2, · · · ,M . Consequently, rε(k) =
r(k), k ∈ S−{i}, rε(i) = rπ(i). We can claim that

ηε − η = θε(Pεg + rε − Pg − r)

= θε(i)[Pπg(i) + rπ(i)− Pg(i)− r(i)] > 0

noting each component of θε is positive for ergodic
chain. This conflicts with that d∗ is a gain-optimal
policy. Thus, the lemma holds. 2

With Lemma 3, the bias difference equation (15)
becomes (recall (Pd)∗gd = 0 and (16))

gd − g = (Pd)∗(gd − g) = −(θdg)e. (31)

This equation provides an interesting insight to
the bias-optimal problem: the difference of the bi-
ases at all states for any two gain-optimal policies
d and d∗ is a constant θdg, with θd being the
steady-state probability of policy d and g being
the bias of policy d∗. Furthermore, we may choose
any gain-optimal policy d∗, then to optimize of
gd is to optimize θd(−g). That is, the bias opti-
mization problem is equivalent to the gain opti-
mization problem with −g as the reward function
r. With this in mind, we can translate many
results for gain optimality to bias optimality. In
particular, we have

gd − g = e(θd)(Pd − P )w. (32)

From (32), we have the following lemma.

Lemma 4. For ergodic MDP, suppose P and Pd

are both gain optimal. If Pdw � Pw, then we
have gd > g. If Pdw = Pw, then we have gd = g.

Let d0 be any gain-optimal policy and set D0 =
arg maxd∈D{Pdη

∗ = η∗, Pdgd0 + rd = Pd0gd0 +
rd0}.
We then have the Bias Optimality Policy Iteration

Algorithm for ergodic case:
1., 2. and 4. are the same as the multichain case.
3. Choose dn+1 ∈ arg maxd∈D0{Pdwdn

}, setting
dn+1(s) = dn(s) if possible.

6. CONCLUSION

We have demonstrated that by the bias-difference
formula we can derive the bias-optimal policy
iteration; this provides a simple and intuitive way
to establish the results; it is also in the same
framework as the gain-optimal problem.

Since the bias g and the bias offset w both can
be estimated on a single sample path without
knowing the state transition probability matrix P .
we can develop on-line policy iteration algorithms.

Using the same idea as this paper, we can find
N -discount optimal policy for n ≥ −1. Further
research is need in this direction and for problems
with infinite state spaces.
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