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Abstract: To check the stability margins the designers commonly use the graphical
method which is very constraining when the verification must be done several
times, as for instance when a routine is to be developped. In this paper a practical
method is proposed, based on the Kalman-Yakubovich-Popov (KYP) lemma. This
method avoids the conservatism induced by H∞ analysis and a huge calculation
as the one derived by µ-analysis. Copyright c©2005 IFAC
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1. INTRODUCTION

The stability margins are the mostly used con-
straints specified by the manufacturer to translate
the robust stability. To determine them without
using the classical graphical method, a H∞ anal-
ysis can be done by using the small gain theorem,
but it is known to be conservative since the gain
and phase (or delay) variations are mixed in the
same uncertainty. A better way is to use µ-analysis
but it leads to an important number of added
variables, despite of its accuracy.

The problem considered in this paper is to de-
termine with a good accuracy the value of the
margins without involving a huge calculation. Al-
though the Matlab function allmargin gives a
good accuracy in most cases, the results can be
inadequate because they are based on computing
the frequency response for a finite number of fre-
quencies and a linear interpolation between the

obtained values is used. In this paper a method is
developed to avoid such an interpolation.

Furthermore, the aim is not only to present a
method for analysis, which each department of
automatic control has already developed, but to
find a method which can be further expanded to
a multiobjective controller synthesis, as it is the
case for H∞ and µ analyses.

This paper is influenced by the works of Kao (Kao,
2002; Kao and Jönsson, 2000), where the Kalman-
Yakubovich-Popov (KYP) lemma is used to over-
come the added variables introduced in a classical
Linear Matrix Inequality (LMI) problem. In this
paper the eigenvalues of a Hamiltonian matrix are
taken into consideration to check a passivity con-
straint, without having to solve an LMI problem
(which can be harsh for plants with badly damped
modes).

For the phase and delay margins, a bilinear ap-
proximation is used to formalize the problem into



the Linear Fractional Transfer (LFT) form. Such
an approximation is not necessary for the gain
margin.

Only the case of SIMO plants (one control input
with possibly several measurements) is considered
in this paper, which is the major case in aerospace
plants like a launcher or a satellite (when each axis
can be considered separately). This work can be
extended to MIMO plants by considering the same
margin for all inputs.

The paper is organized as follows: section 2 ex-
plains the transformations used to lead the prob-
lem to the LFT form for the gain, phase and delay
margins successively; the main results appear in
section 3, where the constraints enable to deter-
mine the values of the margins. An application
on an aerospace launcher is finally presented in
section 4.

2. LFT FORMS FOR MARGIN ANALYSIS

The common way to perform robust stability
analyses is to put an uncertain plant in the LFT
form, which allows the use of the small gain
theorem. This form is also used in this paper,
but the passivity is used instead of the small gain
theorem.

Consider a continuous or discrete-time plant G
with state space realization:

G :

x w u

ρx

z

y





A B1 B2

C1 D11 D12

C2 D21 D22





(1)

where z is the output to be controlled despite
disturbance w, using control input u and measure-
ment y; ρ represents either the derivative or the
advance operator. In the case of stability margins
for SIMO plants, the transfer between w and z is
scalar and represented by an uncertainty δ, whose
maximal allowable variation is the image of the
margin variation.

Considering a stabilizing controller K, the closed-
loop plant is given by the Redheffer product
Gzw = G ∗ K (see the interconnection structure
of Figure 1), which enables the stability analysis
with respect to δ.

Remark. Note the input w is multiplied by −1,
to allow the use of the Nyquist theorem in the
stability analysis.

2.1 Gain margin

Two types of gain margins can be considered: the
first one is the Reduction Gain Margin (RGM),

G

w z

K

u y

Gzw

Fig. 1. Closed-loop structure for stability margin
analysis

which guarantees the stability for gains less then
one. The second is the Increasing Gain Margin
(IGM), which concerns gains higher than one.
As is commonly known, the gain margin can be
simply put in the LFT form of Figure 2:

Fig. 2. Closed-loop structure for gain margin anal-
ysis

with G22 =

(

A B2

C2 D22

)

, δ varying in [0, 1] and

g = 1− 10
GM

20 , where GM equals either the RGM
or IGM with dB unit. The corresponding state
space representation of G is then:

G :

x w u

ρx

z

y





A B2 B2
(

0 . . . 0
)

0 g

C2 D22 D22





(2)

2.2 Phase margin

The phase margin is given by multiplying plant
G22 by eiθ (Figure 3), where θ is the phase margin.

G22

K

Fig. 3. Phase margin representation

The idea for getting the LFT form of Figure 1 is to
replace eiθ by a rational function also describing
the unit circle:

eiθ =
1 + iθ̂

1− iθ̂
(3)



Note that for θ ∈ [0, θe], θ̂ is real and belongs to
[

0, e
iθe

−1
i(eiθe+1)

]

.

Equation (3) can be realized as the interconnec-

tion iθ̂ ∗ N , with:

N =

(

1 1
2 1

)

(4)

The problem can then be formulated in LFT form,
with δ ∈ [0, 1], as shown in Figure 4.

Fig. 4. Closed-loop structure for phase margin
analysis

The corresponding state space representation of
G is then:

x w u

ρx

z

y





A 2B2 B2
(

0 . . . 0
)

ĝ ĝ

C2 2D22 D22





(5)

where ĝ =
1− e−iθe

1 + e−iθe

2.3 Delay margin

The delay margin is derived from the phase mar-
gin θ as:

τ =
θ

ω0
(6)

where ω0 is the maximal frequency ω, such that
|Gzw(iω)| = 1.

For finding ω0, the KYP lemma will be used once
again, as explained in the next section along with
a method for the analysis of the closed loop plant
with uncertainty δ ∈ [0, 1].

3. DETERMINATION OF THE STABILITY
MARGINS

The computation of the stability margins will be
based on the state-space representations (2) (for
the gain margins) and (5) (for the phase margin).
These realizations are obtained for given fixed

values of g and θe respectively: they will allow to
test if the corresponding margin is at least equal
to this value. To obtain the best evaluation of the
margin, the test will be repeated by applying a
bisection algorithm on a given interval, just like
for the classical computation of the H∞ norm.

Only the continuous case will be considered: for
discrete-time plants, the analysis can be done by
applying first a Tustin transformation.

Note first that according to the Nyquist theorem,
the closed-loop plant of Figure 2 or 4 remains
stable for all δ ∈ [0, 1] iff the Nyquist plot of
Gzw doesn’t intersect the real axis on interval
(−∞,−1]. A first sufficient condition is that the
real part of Gzw(iω) always remains greater than
−1, which can be written:

H(iω) = (Gzw(iω) + 1) + (Gzw(iω) + 1)
∗ > 0

∀ω ∈ [0,∞)
(7)

This is a passivity constraint which can be checked
using the KYP lemma by the approach proposed
below. Although it is generally efficient for rigid
models, it can be too conservative, especially
for plants with bending modes. The proposed
approach is therefore more general.

The key idea is to look for the points where the
Nyquist plot ofGzw intersects the real axis, and (if
there exist) to check if they are on the right of −1.
Equivalently, by applying a +π

2 rotation to the
Nyquist plot, one has to look for the intersections
with the imaginary axis. Such a rotation is simply
obtained by replacing the C and D matrices of
Gzw by iC and iD respectively.

The KYP lemma can now be used to test if
the Nyquist plot remains on the right-half plane
(which is a passivity constraint) and, if not, to
determine the intersection points. Although it
gives several equivalent conditions (see for in-
stance (Iwasaki and Hara, 2003)), only two of
them will be considered.

Lemma 1. Let the matrix function:

H(iω) =

(

Ĝ(jω)
I

)∗(

Q F

F ∗ R

)(

Ĝ(jω)
I

)

(8)

where Ĝ(iω) = (iωI −A)
−1
B, Q = Q∗, R = R∗,

and A is Hurwitz. Assume the pair [A,B] is stabi-
lizable. The following statements are equivalent:

(1) H(iω) > 0, ∀ω ∈ [0,∞).
(2) R > 0, and the Hamiltonian matrix H has

no eigenvalues on the imaginary axis

where H is defined by:

H =

(

A−BR−1F ∗ BR−1B∗

Q− FR−1F ∗ −AT + FR−1B∗

)

(9)



The passivity constraint is obtained for :

Q = 0

F = C∗

R = D∗ +D

If after the rotation one obtains real(D) = 0 then
R will be replaced by R = D∗+D+ε, where ε > 0
is a small real number. This means that the KYP
lemma checks if the Nyquist plot always remains
with a real part greater than −ε or equivalently if
the original Nyquist plot always has an imaginary
part greater than +ε. To avoid the case where
there is an intersection between the axis y = iε

but there is none with the real axis (Figure 5),
a second condition is added, which is H(iω) < 0
with R = D∗+D−ε, where ω must have the same
sign in both intersections.

real

imag

-1

Fig. 5. Example of the usefulness of two passivity
constraints

In the case where real(D) < 0 the condition (1)
of Lemma 1 is replaced by H(iω) < 0.

The important point is that the values of ω for
which the original Nyquist plot intersects the real
axis correspond exactly to the imaginary eigen-
values of the Hamiltonian matrix if the passivity
constraint is not verified.

Proof. The equivalence induced in lemma 1 is
mainly due to the fact that if ω̂ is a solution
of H(iω̂) = 0, then iω̂ is the eigenvalue of the
Hamiltonian matrix H.

To establish this fact, a state space representation
of H can be derived by writing H successively as:

H :





(

A B

I 0

)

I





∗
(

Q F

F ∗ R

)





(

A B

I 0

)

I





H :





A B

I 0
0 I





∗
(

Q F

F ∗ R

)





A B

I 0
0 I





H :

(

−AT Q F

−B∗ F ∗ R

)





A B

I 0
0 I





H :





A 0 B

Q −AT F

F ∗ −B∗ R





The zeros of the transfer function H are the poles
of H−1 for R 6= 0, which are the eigenvalues of:

(

A 0

Q −AT

)

−

(

B

F

)

R−1
(

F ∗ −B∗
)

=
(

A−BR−1F ∗ BR−1B∗

Q− FR−1F ∗ −AT + FR−1B∗

)

which is exactly H.

Finally, for checking if the chosen value of the
stability margin is satisfied, the values of ω̂ are
replaced on Gzw and if the real parts are all
greater than −1, then this value of the margin
is verified (the imaginary part should be equal to
zero or negligible).

Since for the gain margin D is complex (after the
+π

2 rotation), the use of ε is required. For the
phase margin, D is a real scalar.

According to these developments, the delay mar-
gin can also be calculated by using the value of
the phase margin and looking for ω0 in (6). The
constraint to be checked is:

Ĥ(iω) = 1−Gzw(iω)G
∗

zw(iω) > 0 ∀ω ∈ [0,∞)(10)

which is obtained by the following new values of
Q, F and R:

Q = CTC

F = −CTD

R = −DTD + 1

Using the corresponding Hamiltonian matrix, the
maximum absolute value of all eigenvalues located
on the imaginary axis is ω0. An example of ap-
plication will be given in the following section to
show the efficiency of the approach.

4. APPLICATION TO AN AEROSPACE
LAUNCHER

The application is developed for the yaw axis of
an European space launcher (figure 6), whose dy-
namics include three rigid modes and five bending
modes (the sloshing modes are not considered).
The main launcher disturbance is the wind speed
W , which does not occur directly on the input
command β (the angle of nozzle deflection), nor
on the measured output ψ (the attitude angle).
The rigid state space model can be written as:






























d

dt





ψ

ψ̇

ż



 = A





ψ

ψ̇

ż



+
(

B BW

)

(

β

W

)

y = (1 0 0)





ψ

ψ̇

ż





(11)

This model is increased by a 2nd order model of
the actuator, while the sensor is considered as a
constant gain.



Name
Title

  

Fig. 6. Two dimensions launcher representation

Several multiobjective compensators have been
proposed to this problem: see (Clement, 2001;
Voinot, 2002; Abbas-Turki et al., 2004) and the
references given in (Imbert and Clement, 2004).
In this study, the stability margins of the com-
pensator given in (Abbas-Turki et al., 2004) are
analyzed.

Among all the manufacturer specifications (Clement
et al., 2001), the following stability margins have
been specified:

• decreasing and increasing gain margins at
least equal to ∆GLF and ∆GHF respectively

• time delay at least equal to the sample-time
Te.

The Nichols plot for the open loop plant with the
compensator is showed in Figure 7. The values of
the gain, phase and delay margins given by the
Matlab function allmargin are:

• decreasing gain margin: 2.36×∆GLF

• increasing gain margin: 2.14×∆GHF

• delay margin: 1.43× Te

whereas the proposed approach gives the following
values:

• decreasing gain margin: 2.35×∆GLF

• increasing gain margin: 2.14×∆GHF

• delay margin: 1.86× Te

Although the difference seems to be insignificant,
one has to take into account that even a small
difference can have a significant effect if such
an analysis is included in a synthesis procedure.
Note finally that the value given by the proposed
method has been verified by including a Padé
approximation of the delay in the feedback loop
and computing the closed-loop eigenvalues.

5. CONCLUSION

This paper gives improvements on analyzing the
stability margins. The numerical efficiency of the
proposed technique has been showed by consid-
ering the analysis of an aerospace launcher. The

Fig. 7. Nichols chart of the controlled plant

interesting point is that no interpolation method
is used, which is very promising for expanding this
method into a synthesis one.

Indeed the passivity constraint is a convex one,
which allows the use of various algorithms such as
the Cutting Plane Algorithm of (Kao, 2002; Kao
and Jönsson, 2000). Note however that due to
the restrictions to a certain interval of intersec-
tion, the problem becomes nonconvex, so that
the convergence of these algorithms is no longer
guaranteed. It is therefore a subject for future
research.
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