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1. INTRODUCTION

Actual systems have input constraints due to the
limits on performance and for protection of the
systems. Lin and Sontag proposed a universal
control formula for a nonlinear system such that
the 2-norm of inputs is less than one by using
a control Lyapunov function (Lin and Sontag,
1991). Malisoff and Sontag provided a universal
control formula for a nonlinear system such that
the k-norm of inputs is less than one (Malisoff and
Sontag, 2000). However, k is limited to 1 < k ≤ 2.

In this research, we propose a new control formula
that can be applied in any case of k ≥ 1. First, we
look for a domain in which the origin is asymptot-
ically stabilizable. Secondly, we derive the input
that minimizes the derivative of a local control
Lyapunov function under the input constraint.
Thirdly, we design a stabilizing controller that can
be applied in any case of k ≥ 1. Finally, we confirm

the effectiveness of the proposed controller by
computer simulation.

2. PRELIMINARY

In this section, we introduce mathematical nota-
tion and some definitions. We consider the follow-
ing affine system:

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n is a state vector and u ∈ U ⊆ R

m

is an input vector. We assume that f : R
n → R

n

and g : R
n → R

n×m are continuous mappings and
f(0) = 0. We use the notation R>0 := (0,∞) and
R≥0 := [0,∞).

Definition 1. (control Lyapunov function). A
smooth proper positive definite function defined
on a neighborhood of the origin X ∈ R

n, V :
X → R≥0 is said to be a local control Lyapunov
function for system (1) if the condition



inf
u∈U

{LfV + LgV · u} < 0 (2)

is satisfied for all x ∈ X , x �= 0. Moreover, V (x)
is said to be a control Lyapunov function (clf) for
system (1) if V (x) is a function defined on R

n and
condition (2) is satisfied for all x ∈ R

n, x �= 0. �

Definition 2. (small control property). A (local)
control Lyapunov function is said to satisfy the
small control property (scp) if for any ε > 0, there
is a δ > 0 such that, if x �= 0 satisfies ‖x‖ < δ,
then there is some u ∈ U with ‖u‖ < ε such that
LfV + LgV · u < 0. �

If there exists no input constraint (U ≡ R
m),

a smooth radially unbounded positive definite
function V : R

n → R≥0 is a clf if and only if

LgV = 0 =⇒ LfV < 0, ∀ x �= 0. (3)

We define h(x) as the right hand side of system
(1) with a state feedback law u = β(x);

ẋ = f(x) + g(x)β(x) := h(x). (4)

If β(x) is continuous except the origin, the closed
system has always a Carathéodory solution for
each initial state. On the other hand, if β(x)
is not continuous, Carathéodory solution do not
exist. Hence, we associate (4) with a differential
inclusion of the form

ẋ ∈ F (x). (5)

In this paper, we apply the Fillippov’s approach

F (x) =
⋂
ε>0

⋂
µn(N)

co{h(Bε(x)\N)}, (6)

where Bε(x) denotes the open ball of center x and
radius ε, co denotes the convex closure of a set,
and µn is the Lebesgue measure of R

n.

Definition 3. (Lyapunov function). A smooth and
positive definite function defined on a neighbor-
hood of the origin X ⊂ R

n, V : X → R≥0 is
said to be a local Lyapunov function for system
(5) if the following condition is satisfied for all
0 �= x ∈ X :

∂V

∂x
· v < 0, ∀ v ∈ F (x). (7)

Moreover, V (x) is said to be a Lyapunov function
for system (5) if V (x) is a radially unbounded
function defined on R

n and condition (7) is satis-
fied for all 0 �= x ∈ R

n. �

Theorem 1. (Bacciotti and Rosier, 2001) Let F be
a set-valued map such that the local existence of
solutions of (5) is insured. If a (local) Lyapunov
function exists, then the origin is (locally) asymp-
totically stable. �

3. MALISOFF’S UNIVERSAL FORMULA

When there is not any input constraint, Sontag
proposed a universal control formula for a non-
linear system (Sontag, 1989). In this paper, we
consider a nonlinear system such that inputs are
restricted to the Minkowski ball of radius 1;

Uk =

⎧⎨
⎩u ∈ R

m

∣∣∣∣∣∣ ‖u‖k =

(
m∑

i=1

|ui|k
) 1

k

< 1

⎫⎬
⎭ ,

(8)
where k ≥ 1. Lin and Sontag provided a universal
control formula with respect to Minkowski ball
U2 (Lin and Sontag, 1991). Malisoff and Sontag
improved the Lin’s controller so that it can be
applied in the case of 1 < k ≤ 2 (Malisoff and
Sontag, 2000).

Theorem 2. (Malisoff’s universal control formula).
We consider system (1) with input constraint (8).
We assume that f(x) and g(x) are smooth. Let
V (x) be a clf for the system and k = 2r/(2r − 1),
where r > 0 is an integer. Then, the input

ui = −
LfV +

(
LfV 2r + ‖LgV ‖4r2

2r

) 1
2r

1 +
(
1 + ‖LgV ‖2r(2r−1)

2r

) 1
2r

· LgiV
2r−1

‖LgV ‖2r
2r

(LgV �= 0)
ui = 0 (LgV = 0)

(i = 1, . . . , m)
(9)

is smooth on R
n\{0}, and globally asymptotically

stabilizes the origin. Moreover, if the right hand
side of (1) is real analytic in x and V (x) is
real analytic, then the input is real analytic on
R

n\{0}. Furthermore, if V (x) has the scp, then
the input is continuous at the origin. �

In the case of LgV �= 0, Malisoff’s controller (9)
can be rewritten as

ui = −b1(x)
LgiV

2r−1

‖LgV ‖2r−1
2r

= −b1(x)
LgiV

1
k−1

‖LgV ‖
1

k−1
k

k−1

(i = 1, . . . , m),
(10)

where b1 : R
n → R>0. Note that k is limited to

1 < k ≤ 2.

4. DOMAIN IN WHICH THE ORIGIN IS
ASYMPTOTICALLY STABILIZABLE

The objective of this paper is to propose a stabi-
lizing controller that can be applied in any case of
k ≥ 1 by using a local control Lyapunov function.
For a simplicity, we assume that a local clf sat-
isfies condition (3) for all x ∈ R

n. We define the



derivative of a local clf V̇ (x, u) by the following
equation:

V̇ (x, u) = LfV + LgV · u, (11)

where we permit discontinuous inputs. We can
guarantee a domain in which the origin is asymp-
totically stabilizable as the following:

Theorem 3. Let V (x) be a local clf for system
(1) with input constraint (8), and a1 > 0 be the
maximum number such that the condition

inf
u∈Uk

{LfV + LgV · u} < 0, ∀ x �= 0 (12)

is satisfied for all x ∈ W = {x|V (x) < a1}.
Then, W is a domain in which the origin is
asymptotically stabilizable. If V (x) is a clf, then
a1 = ∞ and W = R

n. �

Since condition (12) is satisfied for all x ∈ W ,
we can design a controller such that V̇ (x, u) < 0
(∀ 0 �= x ∈ W ). Such a controller takes the state
into the level set of the local clf, and the trajectory
does not go out of W . Hence, W is a domain
in which the origin is asymptotically stabilizable.
We prove Theorem 3 after we design a stabilizing
controller.

5. INPUT THAT MINIMIZES V̇ (X, U) IN ŪK

In this section, we derive the input that minimizes
V̇ (x, u) under an input constraint u ∈ Ūk, where
Ūk is the closure of Uk. We also reach an impor-
tant condition that is satisfied in domain W .

From (11), we find that the input that minimizes
V̇ (x, u) in Ūk is equivalent to the input that
minimizes LgV · u in Ūk. Noticing the fact, we
obtain the following proposition:

Proposition 1. We consider system (1) with an
input constraint u ∈ Ūk. Let V (x) be a local clf
for the system. Then, the input

ui =

⎧⎪⎪⎨
⎪⎪⎩

− |LgiV | 1
k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV ) (LgV �= 0)

0 (LgV = 0)
(i = 1, . . . , m)

(13)

minimizes the derivative V̇ (x, u) for each x. �

Proof 1. An input that minimizes V̇ (x, u) in Ūk

is equivalent to an input that minimizes LgV · u
in Ūk. For each x such that LgV �= 0, we consider
(hyper) surface Q : LgV · u = a2 such that
Ūk ∩ Q �= φ. Consider the problem of minimizing
a2 ∈ R. If Q is tangent to Ūk at a point ū and
LgV · ū < 0, the contact point ū denotes the input
that minimizes V̇ (x, u) in Ūk (See Fig. 1).
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Fig. 1. Input that minimizes V̇ (x, u) in Ūk

Let ∂Ūk be the boundary of Ūk. Then, the follow-
ing equation denotes ∂Ūk:

S :=
m∑

i=1

|ui|k − 1 = 0. (14)

i) In the case of 1 < k < ∞, S is differentiable.
From (14), the plane that is tangent to Ūk at ū
can be described as the following:

m∑
i=1

|ūi|k−1 sgn(ūi)ui = 1. (15)

By (15), we can obtain the following equation such
that plane Q : LgV · u = a2 is tangent to Ūk at ū,
and LgV · ū < 0 :(|ū1|k−1 sgn(ū1), . . . , |ūm|k−1 sgn(ūm)

)
= −a3 (Lg1V, . . . , LgmV ) ,

(16)

where a3 > 0. From (14) and (16), we obtain input
(13).

ii) In the case of k = 1, Ū1 becomes

Ū1 =

{
u ∈ R

m

∣∣∣∣∣‖u‖1 =
m∑

i=1

|ui| ≤ 1

}
, (17)

and we get

LgV · u ≥ −
m∑

i=1

|LgiV | · |ui| ≥ −‖LgV ‖∞. (18)

Set ui = 0 (|LgiV | �= maxi=1,...,m |LgiV |) and
ui = −|LgiV |∞ sgn(LgiV )/

∑
i=1,...,m |LgiV |∞

(|LgiV | = maxi=1,...,m |LgiV |). Then, the input
achieves LgV · u = −maxi=1,...,m |LgiV |. From
(18), we find that the input minimizes LgV · u
in Ū1. The input corresponds to input (13) in the
case of k = 1.

iii) In the case of k = ∞, Ū∞ becomes

Ū∞ =
{

u ∈ R
m

∣∣∣∣‖u‖∞ = max
i=1,...,m

|ui| ≤ 1
}

,

(19)
and we obtain

LgV ·u ≥ −
m∑

i=1

|LgiV | · |ui| ≥ −
m∑

i=1

|LgiV |. (20)

Set ui = − sgn(LgiV ). Then, the input achieves
LgV ·u = −∑m

i=1 |LgiV |. From (20), we find that



the input minimizes LgV · u in Ū∞. The input
corresponds to input (13) in the case of k = ∞. �

The k-norm of (13) does not become small even
if the state is near the origin. So, it is not appro-
priate to stabilize the system by input (13). Note
that the directional vector of Malisoff’s controller
(9) corresponds to input (13).

Input (13) gives the minimum value of V̇ (x, u) as
the following:

V̇ (x) = LfV − ‖LgV ‖ k
k−1

. (21)

If LgV �= 0, we define

P (x) =
LfV

‖LgV ‖ k
k−1

. (22)

If P (x) < 1, condition (12) is satisfied. If P (x) ≥
1, however, condition (12) is not satisfied. Namely,
the domain in which P (x) < 1 contains domain
W . Hence, we obtain the following lemma:

Lemma 1. Let V (x) be a local clf for system (1)
with input constraint (8), W be a domain in
Theorem 3, P (x) be a function defined by (22).
Then,

sup
x∈{x∈W |LgV (x) �=0}

P (x) = 1. (23)

�

6. CONTROLLER DESIGN

In this section, we propose a new controller such
that the directional vector corresponds to input
(13). The controller is continuous on W\{0} if
m = 1 or 1 < k < ∞, and it is also continuous at
the origin if V (x) has the scp. For this purpose,
we consider a subset Ū ′

k ⊂ Ūk such that Ū ′
k is

similar to Ūk (same shape), Ū ′
k becomes small if

P (x) becomes small, and Ū ′
k → Ūk as P (x) →

1. To stabilize the system, we choose the input
that minimizes V̇ (x, u) in Ū ′

k (See Fig. 2). Note
that subset Ū ′

k has to be large enough to hold
V̇ (x, u) < 0 (∀ 0 �= x ∈ W ) under the input
constraint u ∈ Ū ′

k.

If LgV �= 0, the input that minimizes V̇ (x, u) in
Ū ′

k can be written as

ui = −b2(x)
|LgiV | 1

k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV ) (i = 1, . . . , m),

(24)
where b2 : R

n → R>0. Input (24) achieves

V̇ (x) = LfV − b2(x)‖LgV ‖ k
k−1

. (25)

In order to hold V̇ (x) < 0, we choose b2(x) as the
following:

b2(x) =
P (x) + |P (x)|

2
+ b3(x), (26)
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Fig. 2. The input that minimizes V̇ (x, u) in Ū ′
k

where b3 : R
n → R>0. Then, V̇ (x) = LfV −

b3(x)‖LgV ‖k/(k−1) < 0 if LfV ≤ 0, and V̇ (x) =
−b3(x)‖LgV ‖k/(k−1) < 0 if LfV > 0. We choose
b3(x) such that input constraint (8) is satisfied,
input (24) is continuous on R

n\{0} if m = 1 or
1 < k < ∞, and it is also continuous at the origin
if V (x) has the scp. Although b3(x) is not obtained
uniquely, we propose the following selection:

Theorem 4. Let V (x) be a local clf for system
(1) with input constraint (8), W be a domain in
Theorem 3, P (x) be a function defined by (22),
c > 0 and q ≥ 1 are constants. Then, the input

ui = −P + |P | + c‖LgV ‖q

2 + c‖LgV ‖q
· |LgiV | 1

k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV )

(LgV �= 0)
ui = 0 (LgV = 0)

(i = 1, . . . , m)
(27)

asymptotically stabilizes the origin in domain W .
If m = 1 or 1 < k < ∞, the input is continuous on
W\{0}. Moreover, if V (x) has the scp, the input
is also continuous at the origin. �

Proof 2. i) In the case of LgV = 0, input con-
straint (8) is satisfied clearly. From Theorem 3,
we get V̇ (x) = LfV < 0 for all 0 �= x ∈ W .

ii) We consider the case of LgV �= 0. From P (x) <
1, we obtain

‖u‖k =
P + |P | + c‖LgV ‖q

2 + c‖LgV ‖q
< 1.

Therefore, input constraint (8) is satisfied. If δ <
1, ‖LgV ‖q < δ, and LfV < δ‖LgV ‖k/(k−1), then
‖u‖k < (2 + c)δ. Furthermore, ‖u‖k can be made
as small as desired when δ is taken to be small
enough. If P (x) ≤ 0, we get V̇ (x) < 0 obviously.
If 0 < P (x) < 1, input (27) becomes

ui = −
{

P +
c(1 − P )‖LgV ‖q

2 + c‖LgV ‖q

}

· |LgiV | 1
k−1

‖LgV ‖
1

k−1
k

k−1

sgn(LgiV ),



and it achieves

V̇ (x) =
c(P − 1)‖LgV ‖q‖LgV ‖ k

k−1

2 + c‖LgV ‖q
< 0.

Input (27) asymptotically stabilizes the origin in
domain W since V̇ (x) < 0 (∀ 0 �= x ∈ W ) �

The q-norm ‖LgV ‖q in (27) can be replaced by
other appropriate functions. Note that the di-
rectional vector of input (27) corresponds to the
directional vector of Malisoff’s controller (9). This
implies that (27) is a generalized controller with
respect to Uk. From Malisoff’s formula (9) and
2r = k/(k − 1), we can obtain another controller
that can be applied in any case of k ≥ 1 as the
following:

ui =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−
LfV +

(
|LfV | k

k−1 + ‖LgV ‖
k

(k−1)2

k
k−1

) k−1
k

1 +
(

1 + ‖LgV ‖
k

(k−1)2

k
k−1

) k−1
k

· |LgiV | 1
k−1

‖LgV ‖
k

k−1
k

k−1

sgn(LgiV ) (LgV �= 0)

0 (LgV = 0)
(i = 1, . . . , m).

(28)

If f(x) and g(x) are smooth, Malisoff’s controller
(9) is smooth except the origin. It is natural to
ask whether input (24) becomes smooth as well.
We consider the case of k > 2. From 1/(k − 1) <
1, |LgiV |1/(k−1) sgn(LgiV ) is not differentiable at
points such that LgiV = 0. Therefore, input
(24) is not smooth for any b2(x). In the case of
1 < k ≤ 2, we obtain 1/(k − 1) ≥ 1. Hence, if we
choose smooth b2(x), input (24) becomes at least
a C1 function. The k/(k − 1)th root in Malisoff’s
controller (9) is employed in order to make (9) real
analytic when k = 2r/(2r − 1). In this paper, we
use the absolute value instead of the k/(k − 1)th
root because we need only continuity.

Proof 3. We prove Theorem 3. Input (27) ahieves
V̇ (x) < 0 for all 0 �= x ∈ W . The trajectory of the
state goes into the level set of the local clf and
does not go out of domain W . So, W is a domain
in which the origin is asymptotically stabilizable.
�

7. SIMULATION

We consider a system

ẋ1 = x1 − 4x2 + u1

ẋ2 = x2 + u2
(29)

with an input constraint ‖u‖k < 1. We choose a
local clf as V (x) = (x2

1 + x2
2)/2.

i) We consider the case of k = 3. From (22), we
get

P =
x2

1 − 4x1x2 + x2
2

‖x‖ 3
2

. (30)

We set c = 1 and q = 1 in (27). Then, the
controller

ui =

⎧⎪⎨
⎪⎩

−P + |P | + ‖x‖1

2 + ‖x‖1
· |xi| 12
‖x‖ 1

2
3
2

sgn(xi) (x �= 0)

0 (x = 0)
(i = 1, 2)

(31)

asymptotically stabilizes the origin in domain
W = {x|x2

1 + x2
2 < 3

√
2/9}, where we get W

from the definition of V (x) and P (x) = 1. Let
x(0) = (−0.26, 0.26)T be an initial state. Figure
3, Fig. 4, and Fig. 5 show the trajectory of the
state, the change in the input, and the norm ‖u‖3,
respectively. The trajectory converges to zero, and
the input constraint ‖u‖3 < 1 is satisfied. More-
over, we can confirm that the input is continuous.
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Fig. 3. Trajectory with input (31)
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Fig. 4. Change in input (31)

ii) We consider the case of k = ∞. From (22), we
get

P =
x2

1 − 4x1x2 + x2
2

‖x‖1
. (32)
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Fig. 5. Change in input (31)

We set c = 1 and q = 1 in (27). Then, the
controller

ui =

⎧⎨
⎩−P + |P | + ‖x‖1

2 + ‖x‖1
sgn(xi) (x �= 0)

0 (x = 0)
(i = 1, 2)

(33)

asymptotically stabilizes the origin in domain
W = {x|x2

1 + x2
2 < 2/9}, where we get W from

the definition of V (x) and P (x) = 1. Let x(0) =
(−0.3, 0.3)T be an initial state. Figure 6 and Fig. 7
show the trajectory of the state and the change in
the input, respectively. The trajectory converges
to zero, and the input constraint ‖u‖∞ < 1
is satisfied. However, we find that input u2 has
chattering. Fig. 7 shows that the Carathéodory
solution to the closed system do not exist.
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8. CONCLUSION

In this paper, we have generalized the Malisoff’s
controller so that it can be applied in any case of
k ≥ 1. In Section 4, we have obtained a domain
in which the origin is asymptotically stabilizable,
W . In Section 5, we have derived the input that
minimizes V̇ (x, u) in Ūk, and have shown that
P (x) < 1 is satisfied for all x ∈ W such that
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Fig. 7. Change in input (33)

LgV �= 0. In Section 6, we have proposed a sta-
bilizing controller that can be applied in any case
of k ≥ 1 as the followings: First, we considered
a subspace Ū ′

k ⊂ Ūk such that Ū ′
k is similar to

Ūk, Ū ′
k becomes small if P (x) becomes small, and

Ū ′
k → Ūk as P (x) → 1. Second, we stabilized

the origin by the input that minimizes V̇ (x, u)
in Ū ′

k. In Section 7, we have demonstrated the
controller’s effectiveness by computer simulation.

If m = 1 or 1 < k < ∞, the proposed
controller is continuous on W\{0}. If k = 1
or k = ∞, however, the proposed controller
may become discontinuous. This causes a chat-
tering phenomenon. We propose a new stabi-
lizing controller that is continuous on W\{0}
in any case of k ≥ 1 in the following paper.
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