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Abstract: This paper studies the open problem of reduced- and fixed-order H∞ synthesis. 
Often, this non-convex constraint is tackled with iterative convex optimisation procedure 
over LMI constraints. In this paper, an evolutionary approach is proposed such that the 
trial and error approach involved in LMI techniques might be overcome. The order of the 
controller is optimised as a multiobjective problem over a set of controller structures, H∞, 
and time-domain specifications. Numerical results are presented with its counterpart the 
LMI procedure design, that show the advantage of investigating the Pareto optimal set 
resulting from the design procedure proposed. Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
 

Within the field of embedded control systems, it is 
desirable to implement a low order controller. When 
a state-space H∞ technique is used, the order of the 
controller must be at least the same as the order of 
the plant. There are three alternatives to reduce the 
order of such controllers:  
1. A reduced order approximation of the plant can 

be generated before designing the controller.  
2. A reduced order approximation of the controller 

can be generated after controller design.  
3. The order of the controller can be constrained 

during the design.  
This paper examines the third alternative. Using 
linear matrix inequalities (LMIs) the intention is to 
include a constraint dim (Ac) < k for some k that is 
smaller than the dimension of A where A and Ac are 
the state matrices of the plant and controller 
respectively. The corresponding LMIs can be 
derived. However, they include rank constraints that 
are non-convex and difficult, if not impossible, to 
treat by current optimisation techniques (Scherer et 
al. 1997). However, recent research has developed 
some solutions to this problem; e.g. an algorithm in 
state space realization (Xin 2004) and a sufficient 
LMI condition in polynomial systems (Henrion 

2003) have been proposed to overcome this non-
convexity and can be used to fix the order of the 
controller. 
 
 

Alternatively, the multiobjective genetic algorithm 
(MOGA) has been shown capable of optimizing 
controller structure and controller parameters 
(Chipperfield and Fleming 1996; Schroder 1998). A 
controller is designed by optimising the controller 
structure (order of the controller) and multiple design 
objectives in both the time domain (overshoot, 
undershoot and settling time) and frequency domain. 
In section 4, two examples of flexible structures have 
been solved numerically to illustrate the proposed 
procedure. The results and the procedure are 
compared with those obtained by LMI techniques. 
 
 

2. PROBLEM STATEMENT 
 
The mathematical framework employed in this work 
is polynomial systems. Consider the plant P of order 
n where 

n

n

a
bP = ,  (1) 

and the SISO feedback configuration shown in 
Figure 1, 
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Assuming that ,  are polynomials and noting 
also that polynomial matrix A has full row rank, the 
dimension of the null-space will be equal to two. Let 
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be a minimal basis for the null-space of matrix A, i.e. 
such that  and the column degree of N are 
minimal among all possible null-space bases. By 
extracting a minimal polynomial basis N for the null-
space of the polynomial matrix A defined in (6), all 
the stabilizing controllers with denominator and 
numerator polynomials  and  can be generated 
with the parametrization shown in eq. (8), 
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where ,  are polynomials such that the YK 
denominator polynomial, q

1λ 2λ
d, is stable and the 

corresponding YK numerator polynomial is given by 
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Then a controller, K, of fixed order m can be found if 
there exist polynomials  and  of order m. The 
remainder of the controller design procedure using 
LMI techniques is fully explained in Henrion et al. 
(2004) and used later in this paper to find the LMI 
controllers. Alternatively, YK parametrization can be 
used to structure the controller (13), which is then 
optimised with the MOGA-based method (Section 
3). The suitability of MOGA is due to a trade off 
between the controller order and the performance of 
the closed-loop system (Chipperfield and Fleming 
1996). Hence, rather than a single optimal solution, 
this multiobjective problem results in a family of 
non-dominated or Pareto optimal solutions. 

1λ 2λ

 
 

3. MULTIOBJECTIVE OPTIMISATION USING 
GENETIC ALGORITHMS 

 
MOGA is an evolutionary algorithm that uses 
standard genetic algorithm (GA) operators (selection, 
crossover and mutation), Pareto ranking, fitness 
sharing and mating restriction. The design 
philosophy of MOGA is to develop a population of 
Pareto optimal or near Pareto-optimal solutions 
whilst maintaining the independence of the 
objectives throughout the optimisation process 
Fonseca and Fleming (1998). 
 



Within MOGA, the initial population is randomly 
generated within a defined range and then decoded 
(in case of a non-real chromosome) to produce the 
corresponding vectors of decision variables. A set of 
objective function values is then evaluated for each 
individual within the population. The sequence of 
genetic operators is then applied, resulting in the 
subsequent generation of further potential solutions. 
MOGA employs multiobjective preference 
articulation extensions to the standard GA. 
Individuals are ranked, based on the objective vector 
and the designer preference’s (goal, priority). The 
consideration of goal and priority selectively 
excludes objectives according to their priority and 
whether or not they meet their goals. 
 
Although the population is potentially able to search 
many local optima, a finite population will tend to 
evolve towards a small region of the search space 
even if other equivalent optima exist. This 
phenomenon is known as genetic drift. A remedy to 
this problem has been proposed by Fonseca and 
Fleming (1995) with Fitness Sharing. This is a 
technique involving the estimation of the population 
density at the points defined by each individual by so 
called kernel methods, and is used to penalize 
individuals according to the proximity of other 
individuals. Mating Restriction specifies how close 
individuals should be in order to mate and it is used 
following fitness sharing. In addition, population 
diversity is encouraged by applying a mutation 
operator to a small number of the existing 
individuals. 
 
3.1 Evaluation function 
 
To define the control problem, an evaluation function 
is encoded, which contains all the objectives 
functions that the controller, K, has to satisfy. The 
performance evaluation function used in this work 
has seven objectives. The first two objectives are the 
H∞ norm of the sensitivity function (10) and the 
complementary sensitivity function (11). 
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Because of the nature of the problems in this paper 
(flexible structures), a third objective called Total 
Variation (TV) (Owens and Chotai 1981) was 
included. This objective provides a measure of the 
oscillations (differences between peak and valley). 
The TV of a function f, is defined by 
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In order to ensure good time-response performance, 
three time-domain objectives were also included: 
Undershoot, Overshoot, Settling time. An additional 
objective was included that measured the order of the 
controller. The chromosome structure shown in 
Figure 2 was implemented along the lines of 

Schroder (1998), where it was used for optimisation 
of weighting functions. 
 

C α0 α1 β0 α2 α3 α4 β1 
 

β2 α5 α6 α7 α8 β3 β4 β5 
 

Fig. 2. Structure of the chromosome. 
 

The variable C shown in Figure 2 selects the 
controller structure, and then the controller K(λ1,λ2) 
is decoded according to equations (13). Finally, the 
controller K=yn/xn can be obtained using equation (8). 
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4. NUMERICAL EXAMPLES 
 
Both MATLAB Genetic Algorithm Toolbox with 
MOGA extension by Fonseca and Fleming (1998) 
and the LMI Algorithms developed by Henrion 
(2003); Henrion et al. (2004) were used to solve the 
following numerical problems. 
 
4.1 Example 1: Low-order damping mode 
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The control problem is to design a controller, K, so 
that the resulting feedback system exhibits a step 
response with no undershoot and the minimal 
possible overshoot and settling time as well as a high 
damping signal response. The first step is to obtain 
an initial controller, for example by solving the 
Diophantine equation (4) with arbitrary placement of 
the poles at s = -1, giving a . The result 
is an initial controller with order m=2 and 
polynomials , . 
The only requirement of the initial controller is to be 
stabilizing. The minimal polynomial basis N for the 
nominal matrix A is given by 
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By solving equations (8) and (9), all the stabilizing 
controllers can be computed from polynomials  
and  in eq. (15) and it may be possible to find 
polynomials  and  (controllers K) that have low 
degree with a stable YK polynomial q

1λ

2λ

nx ny

d  (9), 
 





+−=
=

=
21

2

26λλy
λx

K
n

n .         (15) 

 

The H∞ design procedure, LMI approach proposed in 
Henrion et al. (2004) was used to tackle this problem. 
The formulation to solve the control problem is as 
follows: Given the polynomials an and bn from plant 



(14) and the bound , the frequency domain 
specification on the sensitivity function (16) and the 
linear constraint (17), expressed as an LMI 
constraint, have to be simultaneously optimised. The 

 design algorithm was set up to solve the 
optimisation control problem, and then the 
polynomials x

sγ

∞H

n, qd and qn of a given degree were 
sought such that (16) and (17) are satisfied. 
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In each single run, a controller was found by using 
the concept of the central polynomial, c(s), which is 
the key design step. The H∞ design procedure 
consists of iteratively adjusting the roots of c(s), 
while lowering the upper bound . After a series of 
trials a set of controllers of orders m=1, 2 and 3 were 
obtained and the closed-loop step responses of the 
best controllers are shown in Figure 3. 

sγ
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Fig. 3 Step response of: first-order controllers 

(‘dotted line‘), second-order controllers (‘dashed 
line’) and third order controllers (‘solid line’):LMI 
approach. 

 
The controller design problem was then tackled 
using the MOGA-based method. The decision 
variables used were the controller parameters defined 
in (13) in the chromosome structure from Figure 2. 
An evaluation function was encoded with seven 
objectives, as defined in Section 3.1. The MOGA 
parameters used were: 16 bit resolutions Gray coding 
and linear scaling, the crossover operator employed 
was shuffle with reduced surrogate with probability 
0.7. The mutation operator was modified such that 
only decision variables that are currently active are 
mutated; the probability of applying mutation is 7e-4 
and a population of 100 individuals. The algorithm 
was iterated for 100 generations. The results are 
illustrated in Figures 4 and 5. It can be seen that one 
single solution does not exist, rather a family of 
solutions. The trade-off of the objectives is shown in 
Figure 4. Each line represents a Pareto optimal 
solution, the y-axis shows the performance and the x-
axis represents the objective. The cross-marks on the 
plot correspond to the goals and are connected by a 

dotted line. The objective 6 settling time, the 
objective 7 order of the controller and the objective 1 
H∞ norm of the sensitivity function appear to 
compete quite heavily. Here is where the control 
engineer can select depending on the specifications 
of the applications. Figure 5 illustrates the most 
representative step responses. Most of the step 
responses that have large settling times are first-order 
controllers. The second-order and third order 
controllers show better settling time and this is 
confirmed by looking at the trade-off graph in Figure 
4a.  
 

1 2 3 4 5 6 7

C
os

t

Objective no.

 MOGA Trade-off 

 
(a) 

 
(b) 

 
Fig. 4. (a) Trade-off graph for the controllers KMOGA 

(b) Graphical User Interface (GUI) for preference 
articulation and design objectives. 

 

0 2 4 6 8 10 12 14 16 18 20

0

0.2

0.4

0.6

0.8

1

1.2

Step Response

Time (Sec)

A
m

pl
itu

de

 
 
Fig. 5. Family of preferable step responses (MOGA). 
 
By changing the values of the goals, the search is 
forced to examine other areas of the trade-off 
surface. Note for example, different values of TV 
produce range of responses from smooth to 
oscillatory. Taking advantage of the initial 
information, some of the goals (objective 1, 2, 3 and 
6) were tightened (new goal vector = [1.5 1.5 1.2 
1.001 0 4 4]) and the controller order was reduced to 
2. The new results are displayed in Figure 6, which 
reveals the controllers that meet the new design 
requirements. Figure 7 illustrates the “best” closed-
loop step responses obtained by the MOGA. The step 
response produced by the MOGA controller (18) has 
time-domain characteristics TV =1 which means no 



variations, no overshoot, no undershoot and settling 
time = 3.3 sec.  
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Fig 6. New trade-off graph for the controllers KMOGA. 
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Fig 7. Flexible mode closed-loop step responses of 

MOGA controllers (‘solid line’) and the best LMI 
controller (‘dashed line’). 
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Fig 8 Flexible mode closed-loop frequency-domain 

characteristics of the MOGA controller (‘solid 
line’) and the LMI controller (‘dashed line’). 

 
The numerical results in Figure 7 also show the 
“best” step response produced by the LMI controller 
with no overshoot, no undershoot and settling time = 
3.8 sec. This LMI controller can be found in 
(Henrion et al. 2004). The resulting controller from 
the MOGA method is: 
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In Figure 8, the closed-loop frequency domain 
performance characteristics of the MOGA controller 
are ||T||∞= 0 dB and ||S||∞ =1.2 dB and those by the 
LMI controller are ||T||∞= 0 dB and ||S||∞ =1.5 dB 
 
4.2 Example 2: Flexible Beam (Doyle et al. 1992): 
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The control problem is to design a controller, K, so 
that the resulting feedback system exhibits a step 
response with overshoot no greater than 10% and 
settling time approximately 8 sec. The procedure is 
the same as in Example 1. A new initial controller 
was calculated by solving the Diophantine equation 
(4) with arbitrary placement of the poles at s=-1, 
then . The controller design problem 
was then tackled using the MOGA-based method. All 
the settings of the MOGA were the same as for 
Example 1. The goal vector was set up to search for 
controllers of first, second and third order and the 
remaining objectives were left free. In this way a 
Pareto optimal front was found. This information 
allows the control engineer to visualise which 
specification can be achieved and if a reduction in 
the order of the controller will achieve good 
performance (see Figure 9). 
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Fig. 9. Trade off graph. 
 

According to the time domain specifications and the 
information from Figure 9, all the goals were 
tightened except the undershoot and the new goal 
vector was set to [1.5 1.5 1.3 0.1 0 8 2]. The new 
Trade-off results are shown in Figure 10. 
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Fig 10. New trade-off graph for the controllers KMOGA  

for example 2. 
 
Figure 11 illustrates the “best” closed-loop step 
responses obtained by the MOGA and LMI 
techniques (Henrion 2003). Both controllers 
produced very similar step responses. In Figure 12 
the closed-loop frequency domain performance 
measures of the MOGA controller in eq. (20) are 
||T||∞ = 0 dB and ||S||∞ =2.07 dB and those of the LMI 
controller are ||T||∞ = 0 dB and ||S||∞ =1.5 dB. It is 
important to mention that similar specifications, in 
Doyle et al. (1992), were achieved with H∞ state 
space techniques. However, the controller was of 
order eight. The resulting controller is: 
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Fig 11. Flexible Beam closed-loop step responses of 
    MOGA controller (‘solid line’) and the best LMI  
    controller (‘dashed line’). 
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Fig 12 Flexible Beam closed-loop frequency-domain 

characteristics of the MOGA controller (‘solid 
line’) and the LMI controller (‘dashed line’). 

 
The algorithms were run on a standard PC with 
Pentium IV, 1.7GHz processor. The computational 
cost of solving the examples with MOGA was CPU 
time 15min to 25min. A single run of LMI 
algorithms was CPU time 15 sec. Some experiments 
showed that MOGA with YK parametrization 
enhances the population of closed-loop stable 
controllers providing a reduction in the 
computational burden more so than the same 
formulation without YK parametrization. The 
MOGA approach has been used to deals with MIMO 
systems. However, in this paper, the controller 
structure (13) relies on the preliminary results of YK 
parametrization by Henrion et al. (2004), and thus 
only applies to the SISO case. 
 
 

5. CONCLUSIONS 
 
The LMI optimisation for fixed-order H∞ controller 
design can be computed quickly. However, the 
whole procedure of designing a controller requires 
several attempts. Multiple trials changing the central 
polynomial, bound on the frequency domain 
specification and the order of the controller have to 
be carried out until the specification seems to be 
satisfied or no progress is noticed. Despite the 
computational cost of the MOGA, the Pareto surface 
between controller order and closed-loop 

performance can be investigated in a single run. 
Thus, the control engineer has a choice from among 
the family of Pareto optimal solutions, and design 
time is saved. In general it is rather difficult with 
LMI techniques to cope with time-domain 
specifications (non-convex specifications), whereas 
the MOGA approach affords a straightforward way 
of dealing with them. Moreover, a mixture of 
objectives with a considerable mathematical 
complexity can be included in the evaluation 
function of MOGA with excellent flexibility. 
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