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Abstract: Optimal tracking is considered for a linear time-invariant plant in
data space. The proposed control strategy does not employ any traditional
mathematical model such as a transfer function or a state-space equation. Instead,
the plant dynamics is represented as a set of basis vectors whose elements are input-
output data of the plant. Using this system representation, an optimal tracking
problem is solved, which is to find the control input which minimizes a quadratic
performance index subject to achieving dead-beat tracking for arbitrary reference
signals. Copyright c© 2005 IFAC
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1. INTRODUCTION

Data driven control provides a simple control
strategy based on observed time-series generated
by a plant. In fact, we do not need any traditional
mathematical model of the plant such as a transfer
function, a state equation (Kalman, 1960), or a
kernel representation (Willems, 1991) if available
information about the plant is its input-output
data. The data themselves represent the plant
dynamics. Thus, based on a sufficient number
of the data, we can control the plant, without
introducing any traditional mathematical model.

Several independent ideas regarding data driven
control have been proposed in the context of
optimal control. See, for example, Chan (1996),
Furuta and Wongsaisuwan (1995), Kawamura
(1998), and Skelton and Shi (1994), where a math-
ematical model (e.g., a state equation or a differ-
ence equation) of the optimal controller is derived
directly form the observed data. However, these
papers focus on algorithms to find the controller,
and dynamical system theory for data driven con-
trol is still underdeveloped.

In order to develop a comprehensive framework
for data driven control, the authors have proposed
a dynamical system theory in data space (Fujisaki,
Duan, and Ikeda, 2004), which is based on the idea
proposed by Ikeda, Fujisaki, and Hayashi (2001).
This approach employs a system representation in
data space instead of a transfer function or a state
equation, and it provides a self-contained theory
for data driven control. In fact, this approach
requires neither the mathematical model of the
plant nor that of the controller. In this sense,
this approach realizes a purified version of the
behavioral approach (Willems, 1991), i.e., the
plant is described by its behavior and the control
input is also derived by the behavior.

In the framework provided by Fujisaki et al.
(2004), the plant dynamics is represented as a
set of basis vectors whose elements are input-
output data of the plant, which determines the
data space of the plant. The structure of this
space is investigated, where several subspaces,
e.g., reachable data space and controllable data
space are introduced. Based on these discussions,
two optimal regulation problems are solved in



data space. One is to find the control input
which minimizes a quadratic performance index.
The other is to find the control input which
minimizes a quadratic performance index subject
to achieving dead-beat regulation.

The present paper follows this line of research.
The objective of this paper is to develop a control
strategy in data space which achieves an optimal
tracking for linear discrete time plant. The con-
trol problem is to find the control input which
minimizes a quadratic performance index subject
to achieving dead-beat tracking for a given refer-
ence signal. Unlike the previous paper (Fujisaki et
al., 2004) regarding regulation, tracking problem
requires a different subspace in data space, which
is investigated extensively in this paper. The re-
sult suggests that we need suitable subspaces in
data space in order to solve a particular control
problem.

The outline of this paper is as follows. In Sec-
tion 2, we give a system representation in data
space, and investigate its subspaces which is suit-
able for dead-beat tracking. In Section 3, based
on this structure of the data space, we derive a
way to solve an optimal dead-beat tracking prob-
lem in data space. Algorithms for computation
of bases of the subspaces are also provided. Sec-
tion 4 presents a numerical example. In Section 5,
we make some concluding remarks. The detailed
proofs may be found in Appendix A.

2. SYSTEM REPRESENTATION IN DATA
SPACE

In this paper, we consider a finite dimensional,
linear, discrete time, shift invariant plant with
single input and single output. This system can
be represented as a difference equation

n∑

i=0

αiyk−i =
n∑

i=r

βiuk−i (1)

where uk ∈ R and yk ∈ R are the input and the
output at time k respectively. Furthermore, n and
r denote the MacMillan degree and the relative
degree of the plant, and n ≥ r. The parameters
αi ∈ R and βi ∈ R are constant which satisfy
α0 6= 0 and βr 6= 0.

We suppose that the transfer function of the plant
(1) is coprime, and n and r are known. On the
other hand, we do not assume that αi and βi

are known. Instead, we assume that a sufficient
number of input-output data yk, uk generated by
the plant are available. Then, we present a system
representation and a control strategy based on
the data themselves. Note that we need r in
order to compute an input to achieve dead-beat
tracking for arbitrary reference signals even if we

take transfer function approach or state space
approach.

Let us first introduce a data vector which consists
of ` step outputs and ` − r step inputs from time
k, i.e.,

zr =
[
yk yk+1 · · · yk+`−1

uk uk+1 · · · uk+`−r−1

]T (2)

where ` > n. We use the inputs not till k + ` − 1
but till k+`−r−1 because the inputs from k+`−r
do not affect the outputs till k + ` − 1.

All admissible data vectors are constrained by the
difference equation (1), thus zr generated by the
plant belongs to a subspace in the vector space
R2`−r. We call this subspace the data space, which
is denoted by Zr. Here we state the following
theorem.

Theorem 1.

dim(Zr) = ` + n − r. (3)

That is, any data vector zr can be represented as
a linear combination of ` + n − r basis vectors of
Zr. We therefore regard a basis of Zr as a system
representation of the plant, which is itself a set of
admissible data vectors. In the rest of this section,
we investigate structures of Zr, which will be used
for dead-beat tracking.

Let us define the initial series of the data vector
(2) as its inputs and outputs in the first n steps.
We consider a data vector whose initial series is
0, i.e.,

zrF =
[
0 · · · 0 yk+n · · · yk+`−1

0 · · · 0 uk+n · · · uk+`−r−1

]T (4)

where ` > n + r. We call the set of all zrF

generated by the plant the reachable data space,
which is denoted by ZrF . Then, we obtain the
following theorem.

Theorem 2.

dim(ZrF ) = ` − n − r. (5)

From Theorems 1 and 2, we see that the data
space Zr can be represented as a direct sum

Zr = ZrI ⊕ZrF (6)

where
dim(ZrI) = 2n.

That is, any data vector zr has a unique decom-
position

zr = zrI + zrF

where zrI ∈ ZrI whose initial series is identical to
that of zr, and zrF ∈ ZrF .

Let us define the output terminal series of the data
vector (2) as its outputs in the last s steps, where



s ∈ N. The output terminal series represents an
arbitrary reference signal in the context of dead-
beat tracking, and its length s corresponds to the
time interval such that the output of the plant is
required to be identical to the reference signal.

Remark 3. In this paper, we introduce the output
terminal series of (2) as its outputs in the last s
steps, which will be used for a dead-beat tracking
for arbitrary reference signals. On the other hand,
in the authors’ previous work (Fujisaki et al.,
2004), the terminal series of (2) is defined as its
inputs and outputs in the last n steps, and a dead-
beat regulation is considered for the steady state.

Now, we consider a data vector whose output
terminal series is 0, i.e.,

zrPy =
[
yk · · · yk+`−s−1 0 · · · 0

uk uk+1 · · · uk+`−r−1

]T (7)

where ` > s. We call the set of all zrPy generated
by the plant the output controllable data space,
which is denoted by ZrPy. Then, we have the
following theorem.

Theorem 4.

dim(ZrPy) = ` + n − r − s (8)

From Theorems 1 and 4, we see that the data
space Zr can be represented as a direct sum

Zr = ZrTy ⊕ZrPy

where
dim(ZrTy) = s.

That is, any data vector zr has also a unique
decomposition

zr = zrTy + zrPy

where zrTy ∈ ZrTy whose output terminal series
is identical to that of zr, and zrPy ∈ ZrPy.

Notice here that dead-beat tracking for arbitrary
reference signals can be recast as a problem: Find
a data vector which has a given initial series
corresponding to the initial state of the plant and
a specified output terminal series corresponding
to the reference signal. In this context, Zr should
contain all data vectors having arbitrary initial
series and arbitrary output terminal series. A
necessary condition to meet this requirement is

dim(Zr) ≥ dim(ZrI) + dim(ZrTy) (9)

that is, ` ≥ n + r + s. Under the assumption
` ≥ n + r + s, we obtain the following theorem.

Theorem 5.

dim(ZrPy ∩ ZrF ) = ` − n − r − s. (10)

Thus, under the condition ` ≥ n + r + s,

dim(ZrPy + ZrF )
= dim(ZrPy) + dim(ZrF ) − dim(ZrPy ∩ ZrF )
= dim(Zr)

holds. This means that

Zr = ZrPy + ZrF .

We rewrite the data space Zr with ` ≥ n + r + s
as a direct sum

Zr = ZrIPy ⊕ZrTyF ⊕ZrCy (11)

where
ZrCy = ZrPy ∩ ZrF .

Here, from Theorems 2, 4, and 5, the subspaces
ZrTyF ⊆ ZrF and ZrIPy ⊆ ZrPy satisfy

dim(ZrIPy) = 2n, dim(ZrTyF ) = s.

The relation (11) means that any data vector zr

has a unique decomposition

zr = zrIPy + zrTyF + zrCy

where zrIPy ∈ ZrIPy whose initial series is identi-
cal to that of zr and whose output terminal series
is 0, zrTyF ∈ ZrTyF whose initial series is 0 and
whose output terminal series is identical to that
of zr, and zrCy ∈ ZrCy whose initial and output
terminal series are both 0. Utilizing this fact, as
we will see in Section 3, we can solve an optimal
dead-beat tracking problem based on the system
representation in data space.

3. OPTIMAL TRACKING IN DATA SPACE

In this section, based on the structures of the data
space, we consider optimal dead-beat tracking for
arbitrary reference signals as an optimal control
with finite horizon. We use a performance index

Jr = (zrR − zr)TQr(zrR − zr) (12)

where zr ∈ Zr is a data vector of the plant,
zrR ∈ R2`−r is a given reference data vector, and
Qr ∈ R(2`−r)×(2`−r) is a given positive definite
matrix.

Suppose that ` ≥ n + r + s. Suppose also that
we start controlling the plant at time k + n,
which implies that the data until this time are
known and the initial series of zr is specified. Our
objective is to find an input series to achieve a
dead-beat tracking for a given arbitrary reference
signal, i.e., control inputs such that the output
is identical to the reference signal from k + ` −
s till k + ` − 1. As we have seen in Section 2,
zrIPy ∈ ZrIPy whose initial series is identical to
that of zr and whose output terminal series is
0 and zrTyF ∈ ZrTyF whose initial series is 0
and whose output terminal series is identical to
that of zr are uniquely determined. Thus, optimal
dead-beat tracking control problem is formulated
as follows.



Problem 6. For given zrR ∈ R2`−r, ẑrIPy ∈
ZrIPy, and ẑrTyF ∈ ZrTyF , find the optimal
data vector zropt ∈ Zr which minimizes the
performance index Jr of (12) subject to

zr = ẑrIPy + ẑrTyF + zrCy (13)

where zrCy ∈ ZrCy is the decision variable.

Since the quadratic form xTQrx can be regarded
as a metric in the inner product space R2`−r,
the optimal data vector zrCyopt ∈ ZrCy which
minimizes Jr of (12) can be represented as

zrCyopt = PrCy(zrR − ẑrIPy − ẑrTyF )

where PrCy is the Qr-orthogonal projection onto
ZrCy in R2`−r. It is given by

PrCy = HrCy(HT
rCyQrHrCy)−1HT

rCyQr (14)

where HrCy is a matrix whose columns consist of
a basis of ZrCy. Then, we obtain the following
theorem.

Theorem 7. For given zrR ∈ R2`−r, ẑrIPy ∈
ZrIPy, and ẑrTyF ∈ ZrTyF , there exists a unique
zropt ∈ Zr which minimizes Jr of (12) subject to
(13), and it is given by

zropt = (I − PrCy)(ẑrIPy + ẑrTyF ) + PrCyzrR.

In this way, we obtain zropt. The elements of zropt

corresponding to uk+n, uk+n+1, . . ., uk+`−r−1 are
the optimal inputs to be applied at times k + n,
k + n + 1, . . ., k + ` − r − 1.

In order to compute zropt, we need bases of the
subspaces ZrIPy, ZrTyF , and ZrCy. To this end,
let us introduce a block Hankel matrix of yi and
ui

H =




y0 y1 · · · yi · · ·
y1 y2 · · · yi+1 · · ·
...

...
...

y`−1 y` · · · yi+`−1 · · ·
u0 u1 · · · ui · · ·
u1 u2 · · · ui+1 · · ·
...

...
...

u`−r−1 u`−r · · · ui+`−r−1 · · ·




. (15)

When a sufficient number of data are available,
Theorem 1 ensures that H contains ` + n − r
independent column vectors. We denote HZ as
a matrix whose columns consist of these vectors.
Then, we have the following theorem.

Theorem 8. A column-equivalent matrix of HZ

given by elementary column operations is repre-
sented as

[
HrIPy HrTyF HrCy

]
=




In 0 0 0
∗ ∗ ∗ ∗
0 0 Is 0
0 In 0 0
∗ ∗ ∗ ∗




(16)

where HrIPy, HrTyF , and HrCy are bases of
ZrIPy, ZrTyF , and ZrCy, respectively. Here ∗
represents appropriate matrices determined by
the operations.

From this theorem, we can construct PrCy. Fur-
thermore, we also construct ẑrIPy ∈ ZrIPy and
ẑrTyF ∈ ZrTyF using the bases given in the above.
To show this fact, let us define an initial series
vector as

xI =
[
yk yk+1 · · · yk+n−1

uk uk+1 · · · uk+n−1

]T

which consists of the data obtained by the initial
time k + n. Then, ẑrIPy ∈ ZrIPy whose initial
series is identical to xI is given by

ẑrIPy = HrIPyxI .

Similarly, we define an output terminal series
vector as

xTy =
[
yk+`−s yk+`−s+1 · · · yk+`−1

]T

which consists of the given reference signal. Then,
ẑrTyF ∈ ZrTyF whose output terminal series is
identical to xTy is given by

ẑrTyF = HrTyF xTy. (17)

In this way, we can determine PrCy, ẑrIPy ∈
ZrIPy, and ẑrTyF ∈ ZrTyF . Using these matrix
and vectors together with the reference data vec-
tor zrR, we can compute zropt following Theo-
rem 7.

Remark 9. If ` = n+r+s, then ZrCy = ∅. In this
case, zr of (13) is uniquely determined, and the
minimum step dead-beat tracking is achieved. In
our context, the algorithm proposed by Ikeda et
al. (2001) can be expressed like the above. They
set s = 1, i.e., ` = n+r+1, and compute the input
in a sequential manner. Obviously, if we consider
this kind of control with infinite horizon, the plant
should be of minimum phase in order to obtain a
bounded input series (Ikeda et al., 2001).

4. NUMERICAL EXAMPLE

In this section, we summarize the procedure pro-
posed in the previous section through a numerical
example. We consider a plant with the MacMillan
degree n = 2 and the relative degree r = 1 of the
form

yk + 0.7yk−1 + 0.1yk−2 = uk−1 − 0.5uk−2.

We here assume that the parameters of the plant
are unknown but a sufficient number of the input-
output data generated by the plant are known.
Then, we demonstrate that the procedure gives
the optimal dead-beat tracking input directly



from the data. In this example, we set ` = 7 and
s = 2.

Suppose that an input series to the plant

u0 = −1, u1 = 1, u2 = −1,

u3 = 1, u4 = 1, u5 = −1,

u6 = −1, u7 = 1, u8 = −1,

u9 = −1, u10 = −1, u11 = 1,

u12 = 1, u13 = 1, u14 = 1

and the corresponding output series

y0 = 0, y1 = −1.00, y2 = 2.20,

y3 = −2.94, y4 = 3.34, y5 = −1.54,

y6 = −0.75, y7 = 0.18, y8 = 1.45,

y9 = −2.53, y10 = 1.13, y11 = −1.04,

y12 = 2.11, y13 = −0.88, y14 = 0.90

are observed. We substitute the output data till
time 14 and the input data till time 13 into H of
(15) with ` = 7. Then, H becomes 13 × 8 matrix
having full column rank, thus it can be regarded
as HZ . Following Theorem 8, we obtain a column-
equivalent matrix of HZ as
[
HrIPy HrTyF HrCy

]

=




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0

−0.10 −0.70 −0.50 1.00 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0

−0.07 −0.39 −0.35 1.20 0 0 1 0
−0.05 −0.27 −0.22 0.70 0 0 1.20 1
−0.02 −0.13 −0.11 0.35 1 0 0.70 1.20
−0.01 −0.07 −0.06 0.17 1.20 1 0.35 0.70




.

When we choose Qr in the performance index as

Qr = block diag{I`, 2I`−r}

we can compute the Qr-orthogonal projection
PrCy using (14), which is given in Appendix B.

We choose the reference data vector as

zrR =
[
−1 −0.5 0 0.5 1 0.5 0 0 · · · 0

]T
.

That is, we consider the control problem such that
the output tracks a triangular wave. Since the
data till time 14 are obtained, we use the data
at times 13 and 14 as the initial series and start
the optimal tracking at time 15, i.e.,

xI =
[
−0.88 0.90 1 1

]T
.

Furthermore, since ` = 7 and s = 2, the output
terminal series vector can be taken form zrR as

xTy =
[
0.5 0

]T
.

Using the above, from Theorem 7, we obtain the
solution zropt of the optimal dead-beat tracking
as

zropt =
[
−0.88 0.90 −0.04 −0.32 −0.08 0.5 0

1 1 0.24 −0.19 0.32 0.50
]T

.

That is, the optimal inputs are given by

u15 = 0.24, u16 = −0.19, u17 = 0.32,

u18 = 0.50.

5. CONCLUDING REMARKS

In this paper, we have studied an optimal dead-
beat tracking for arbitrary reference signals based
on a system representation in data space. We have
demonstrated that this control problem can be
actually solved directly from the observed data,
without employing any traditional mathematical
model such as a transfer function or a state
equation.

Note that we have assumed that both of the
MacMillan degree and the relative degree of the
plant are known. Then, we have introduced sub-
spaces of the data space which are consistent with
the a priori information. These subspaces were
useful for realization of the optimal dead-beat
tracking such that the output follows the given
reference signal without tracking error in a finite
number of steps. On the other hand, Fujisaki et
al. (2004) assume that only the MacMillan degree
of the plant is known. Then, different subspaces of
the data space are provided and a dead-beat reg-
ulation is solved such that both of the input and
the output reach a steady state in a finite number
of steps. These results suggest that we may solve a
particular control problem if we introduce suitable
subspaces of the data space which are consistent
with a priori information.
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Appendix A. PROOFS OF THE THEOREMS

We first give the proofs of Theorems 1, 2, 4, and 5.
Note that ` > n. We define (`−n)×(2`−r) matrix
which contains the coefficients of the difference
equation (1) as

Θr =




αn αn−1 · · · α0 0
. . . . . . . . .

0 αn αn−1 · · · α0

−βn −βn−1 · · · −βr 0
. . . . . . . . .

0 −βn −βn−1 · · · −βr


 .

Then, we see that, for any data vector zr,

Θrzr = 0 (A.1)

holds. Since we assume that the coprimeness of
the transfer function of the plant (1), the relation
(A.1) represents the constraint on data vectors zr.
We therefore see that

Zr = KerΘr.

We further consider the other subspaces of Zr.
Suppose that ` is appropriate. We define

JrF = block diag{In, 0`−n, In, 0`−n−r}
JrPy = block diag{0`−s, Is, 0`−r}

which correspond to (4) and (7), respectively.
Then, we rewrite the constraints such that the
initial series or the output terminal series is 0 as

JrF zrF = 0, JrPyzrPy = 0.

Thus, we see that

ZrF = KerΘr ∩ KerJrF

ZrPy = KerΘr ∩ KerJrPy

ZrCy = KerΘr ∩ KerJrPy ∩ KerJrF .

Notice that α0 6= 0 and βr 6= 0. It turns out that
the ranks of the matrices

Θr,

[
Θr

JrF

]
,

[
Θr

JrPy

]
,




Θr

JrF

JrPy




are `−n, `+n, `−n+s, and `+n+s, respectively.
We therefore see that

dim(Zr) = dim(KerΘr)
= 2` − r − rankΘr

= ` + n − r

dim(ZrF ) = ` − n − r

dim(ZrPy) = ` + n − r − s

dim(ZrCy) = ` − n − r − s

which give the results of Theorems 1, 2, 4, and 5.

We next give the proof of Theorem 8. Permuting
the rows of HZ ∈ R(2`−r)×(`+n−r) appropriately,
we have ĤZ whose first 2n+ s rows correspond to
the initial series and the output terminal series.
Theorem 5 says that the dimension of ZrCy is
`− n− r − s. Thus, executing elementary column
operations on ĤZ , we have

[
Ĥ11 0
Ĥ21 Ĥ22

]
.

Note that Ĥ11 ∈ R(2n+s)×(2n+s) is a nonsingular
matrix, thus it can be identity matrix by ele-
mentary column operations. Permuting the rows
of ĤZ again in the converse way, we obtain the
matrix (16), which gives the result of Theorem 8.

Appendix B. ORTHOGONAL PROJECTION

The Qr-orthogonal projection PrCy in the numer-
ical example is given by

PrCy =




0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.25 −0.16 0 0
0 0 0 −0.16 0.26 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0.25 −0.16 0 0
0 0 0 0.13 0.06 0 0
0 0 0 −0.02 0.19 0 0
0 0 0 −0.03 0.12 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.49 0.26 −0.05 −0.06
0 0 −0.33 0.12 0.38 0.24
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0.49 0.26 −0.05 −0.06
0 0 0.26 0.43 0.32 0.17
0 0 −0.05 0.32 0.42 0.25
0 0 −0.06 0.17 0.25 0.15




.


