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Abstract:  
Prompt detection and diagnosis of process malfunctions are strategically important due to economic 
and environmental demands required for industries to remain competitive in world markets.  In this 
paper a new formulation of the computation of the disturbance and fault distribution 
matrices is suggested for Neuro-Fuzzy and De-coupling Fault Diagnosis Scheme (NFDFDS). 
NFDFDS is a multiple-model fault detection and isolation (FDI) approach of non-linear dynamic 
systems.   In this approach, powerful approximation and reasoning capabilities of neuro-fuzzy 
models are combined with the de-coupling capabilities of optimal observers to perform reliable 
fault detection and isolation.  For determination of distribution matrices in this case it is shown that 
a least-squares approach is the most efficient compared with any other non-linear optimization 
technique. Copyright © 2005 IFAC 
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1.  INTRODUCTION 

 
To maintain a high level of performance, safety and 
reliability in control systems the errors, component 
faults and abnormal system operation must be 
detected promptly. The source and severity of each 
malfunction must be diagnosed so that corrective 
action can be taken quickly. Most real application 
systems suffer from disturbances and noise and 
varying operating conditions, leading to a 
challenging modelling requirement. The model-
reality differences have an associated ‘uncertainty’ 
and this usually means that the robust linear and non-
linear estimators need to be considered. 

A lot of model-based FDI methods rely on a linear 
state-space model of the system. However, for non-
linear systems, the standard approach is to linearise 
the process model around an operating point and 
make use of model-based methods derived from 

linear systems theory. However, linearisation does 
not provide a good model for the processes with 
strongly non-linear behaviour.  

It is well known that solutions to the robustness 
problem of FDI for non-linear dynamic systems 
depend upon reliable discrimination between the 
effect of uncertain model behaviour and faults (Chen 
& Patton, 1996; 1999).  

The robust observer approaches, particularly the 
'unknown input observer' (UIO) are undoubtedly the 
most commonly used FDI methods in the present 
context. These linear systems methods can, to some 
extent compensate for model uncertainty thus 
increasing the reliability of fault detection and 
isolation. The model-reality mismatch is represented 
by the so-called ‘unknown input’. Most of the work 
on the UIO has been directed towards linear systems. 
However, there are some observer-based approaches 



  

for certain classes of non-linear systems but the 
systems that can be represented by these non-linear 
observers are limited to a few standard types of non-
linearity (Chen & Patton, 1996; 1999). Furthermore, 
the non-linear observer approach can only be used 
when the non-linear dynamics are known with 
sufficient confidence; this is rarely the case for real 
system applications. 

In this context, the Neuro-Fuzzy (NF) methods are 
known to overcome some of the problems faced by 
the model-based techniques.  NF models combine the 
approximation capability of Neural Networks with 
the reasoning of fuzzy logic (Brown & Harris, 1995; 
Jang, Sun & Mizutani, 1997). Although a trade-off 
exists between modelling accuracy and reasoning 
capabilities of NF schemes, the required structure is 
application dependent (Brown & Harris, 1995; Jang, 
Sun & Mizutani, 1997). This combination gives rise 
to a powerful form of multiple-model approximation 
that is especially attractive when non-linear systems 
are considered and for which only global modelling 
can be valid. Here, our interest is in modelling non-
linear systems for the purpose of detecting and 
isolating system faults and hence a degree of 
transparency is required, to localise faults, 
understand symptoms etc. 

This NF model is then associated with local optimal 
observers based on the unknown input observer 
principle. This leads to the so-called Neuro-Fuzzy 
and De-coupling Fault Diagnosis Scheme 
(NFDFDS) which will be summarized in section 2. 
Section 3 gives a résumé of the main steps involved 
in the NFDFDS.  Note that one of the most important 
steps of this scheme is the determination of the fault 
and disturbance distribution matrices. As it is 
recalled in Section 4, this computation can be 
achieved with different techniques. In this paper 
(Section 5), a new approach based on the 
reformulation of the problem as a least-squares 
problem is given.  It facilitates an improvement in 
the optimality (degree of disturbance de-coupling) of 
the disturbance matrix computation and thereby 
reducing the computational cost.  Sections 6 and 7 
are devoted to the comparision of the results 
achieved with the LS formulation with previously 
used optimisation techniques.  The application study 
considered is the DAMADICS Benchmark Problem 
described in Section 6 (DAMADICS Benchmark 
definition, ver.1.0. 2003). 

2.  NEURO-FUZZY AND DE-COUPLING FAULT 
DIAGNOSIS SCHEME (NFDFDS) 

In real applications the disturbances, noise and 
modelling errors must all be taken into account.  The 
FDI scheme outlined here (Neuro-Fuzzy and De-
coupling Fault Diagnosis Scheme, NFDFDS) 
employs multiple local optimal observers designed 
according to minimum state estimation variance 
(Uppal & Patton, 2004). Through this approach, the 
approximation and reasoning capabilities of neuro-
fuzzy models are combined with the de-coupling 
capabilities of optimal observers to perform reliable 
fault detection and isolation. The structure of the FDI 

scheme is transparent as compared to the NN ‘black 
box’ method and it can also deal with non-linear 
systems in contrast to model-based methods. 

The proposed FDI scheme (Fig. 1) consists of two 
main parts: a bank of (M +1)× N NF-generated de-
coupling observers (based on the unknown input 
observer principle) and a diagnostic logic unit. The 
first part generates a set of residuals ( 0

kr , … , M
kr ) at 

the kth sampling instant, in the form of a structured 
residual set (Chen & Patton, 1999), whilst the second 
part performs an analysis of the residuals to 
determine the nature and location of the faults. In this 
scheme, each residual is designed to be sensitive to a 
subset of faults or the residuals are designed to have 
specific behaviour (sensitivity) in response to the 
different faults. Ideally, each residual is sensitive to 
all but one fault. The set of all such residuals is 
known as a ‘Generalized Residual Set’ based on the 
generalized observer scheme of Frank, (Chen & 
Patton, 1999; Patton, Frank & Clark, 1989). 

Each of the M+1 ‘Fault Diagnosis Observers’ in Fig. 
1 is a non-linear system comprising N linear 
(integrated by fuzzy fusion) sub-observers each one 
corresponding to a different operating point of the 
process. The inputs to each observer are the process 
inputs and outputs, uk and yk, respectively. The 
number of sub-observers depends on the number of 
operating points needed to achieve required 
approximation. Their outputs are combined by fuzzy 
fusion to generate the output estimates. The set of 
residuals comprises the set of differences between 
the actual and estimated outputs. The set of fuzzy 
observers together with the NF multiple-model and 
diagnostic logic form the new scheme called the 
‘NFDFDS’.  

The computational problem increases further with the 
increase in the number of fuzzy rules resulting in a 
larger bank of observers. However, these sub-
observers are linear which makes it possible to use 
the well-developed linear theory. Moreover, the 
observer design is swift and routine, once the model 
identification is achieved and the fault distribution 
matrices are determined. 

3. NFDFDS FORMULATION 

In NFDFDS the sub-observers are based on the local 
linear models with fault and disturbance as described 
below:  
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where c r
ku ∈ R , l n

kx ∈ R , l m
mky ∈ R  are the input, 

state and output vectors for the l-th consequent linear 
model respectively. Each entry of g

kf ∈ R  
corresponds to a specific fault while q

kd ∈ R  stands 

for the disturbance vector. l
kA , l

kB  and l
kC  are the 

system matrices with appropriate dimensions. The 
fault distribution matrix 1

l n g
kF ×∈ R  represents the 

effect of input and component faults on the system. 
l
kw1  and l

kw2  are supposed to be independent zero-



  

mean white noise sequences with correlation 
matrices Qk and Rk, assumed to be known.  
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Fig. 1: Neuro-fuzzy decoupling fault diagnosis 

scheme 
 
The global model can be described by fuzzy IF-
THEN rules that represent the local linear models of 
the non-linear system in the following form: 

Rule-l , (l=1,2,…,N): 
 IF  a

ku  is  Ml   THEN   l
kmkm yy =  (2) 

 
The global output of the fuzzy model is obtained by 
de-fuzzification (weighted sum of the outputs of the 
sub-models) as: 

 ∑
=

=
N

l

l
km

a
k

l
km yuy

1
)(α  (3) 

In the above equation ( ) 1,...,l a
ku l Nα ∀ =  is the 

firing strength of l-th rule, which depends on the 
antecedent variable a

ku . Ml is a fuzzy set and N is the 
total number of linear sub-models. 

For residual generation, for each sub-model an 
optimal disturbance de-coupling sub-observer is 
designed as described in detail in (Uppal & Patton 
2004; Uppal, Patton & Witczak, 2004). Note that the 
determination of the fault and disturbance 
distribution matrices constitutes one of the foremost 
steps in the NFDFDS scheme. The classical 
approaches used in order to compute these matrices 
are summerized hereafter. 

4. FAULT AND DISTURBANCE 
DISTRUBUTION MATRICES: CLASSICAL 

APPROACHES  

The term k
l
k dE  in the l-th sub-system description 

(Eq. (1)) represents model uncertainty and other 
factors affecting reliability of the fault detection.  
This term may be used to represent a number of 
different types of disturbances acting upon the 
system. Moreover, the distribution matrix l

kE may be 
time-varying. 

In order to determine the distribution matrices a 
number of techniques can be employed including 
‘Evolutionary Algorithms’ (Dasgupta & 
Michalewicz, 1997), ‘Gradient Based Methods’ 
(Hagan, Demuth & Beale, 1996) or random search. 
The Augmented Observer described in (Chen & 
Patton, 1999) is often not suitable as the necessary 

existence condition of this observer is that 
( )rank C n= , where n is the number of system 

states. This limits the use of this technique, as it 
requires that the system has n independent 
measurements. 

The underlying problem is to determine the 
disturbance distribution matrix l n q

kE ×∈ R  and the 

fault distribution matrix l
kF1  for 1,...l N= . 

Actually, this problem boils down to the 
determination of the disturbance term kd1 in Eq. (4) 
for the normal and faulty system operations: 
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where l
k

l
k

l
kk

l
kk

l
k

l
k fEwfFdEd 11111 =++=  

This corresponds to the possible solutions for l
kE  and 

k
l
k fF1  respectively: 

(Witczak, et al., 2003) describes an approach for 
unknown input estimation for the following class of 
systems: 

 1 1

1 1 1

( ) ( )k k k k

k k k

x g x h u d
y C x

+

+ + +

= + +
=

 (5) 

where g(.) and h(.) are continuous and differentiable 
non-linear functions of kx  and ku  at the kth sampling 
instant, respectively. 

Notice that this approach assumes a constant 
disturbance distribution direction for the system 
described by Eq. (5). 

In NFDFDS structure a method is described for 
determining an individual distribution direction for 
each sub-model (Uppal & Patton 2004; Uppal, Patton 
& Witczak 2004). This method considers the 
matrices l

kE1  directly i.e. the fault distribution matrix 

1
l
kE  is considered to be constant over time for each 

fault scenario. Therefore, for a particular fault 
scenario i , an unconstrained non-linear optimisation 
task can be performed with the objective to minimise 
an unconstrained multivariable function: 
 ( )

1
1 1arg min

i

i i

E
E f E=%  (6) 

where 
1

1
0

1( )
1

nd
i T

k k
k

f E
nd

ε ε
−

=

=
− ∑ , ˆk k ky yε = −  and kŷ  

is a function of iE1 . 

The Nelder-Mead Simplex Method (Walsh, 1975) 
has been first used for convenience to compute the 
distribution matrices 1

l
kE  directly. In the sequel, this 

problem will be rewritten as a Least-Squares (LS) 
problem, leading to a much more efficient 
computational tool. 

5.  LEAST-SQUARES SOLUTION 

In the following three cases are presented as an 
improvement to determine the disturbance terms, 



  

which enable vectors l
kd1 to be computed. They are 

all based on LS formulation. 

CASE I. Consider that the individual disturbances 
sources 1 , 1,...,l

kd l N=  correspond to each sub-
model. The problem of unknown input estimation 
can be viewed as an unconstrained optimisation task 
of the form: 
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where 111 ˆ +++ −= kkk yyε  is the output error, 

1 11
ˆ N l l

k mkl
y yα+ +=

= ∑  is the process output estimation, 
lα  is the weight held on to each model l and l

kmy 1+  
has been defined in Eq. (1). A few manipulations 
lead to: 
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where 

( )( )1 1 1 2 1
1

N
l l l l l c l m nN

k k k k k k k k
l

y C A x B u wβ α ×
+ + + +

=

⎛ ⎞= − + + ∈⎜ ⎟
⎝ ⎠

∑ R . 

The optimisation problem (7) is thus solved using a 
Least-Square (LS) minimisation: 

 ( )
1

2
11 1 1 1 2

ˆ arg min
k

kk k k kd
d f d K d β+ +

⎡ ⎤= = −⎢ ⎥⎣ ⎦
 (9) 

with  
1 1 2 2

1 1 1 1[ ]N N m nN
k k k kK C C Cα α α ×

+ + + += ∈L R , nNm ≤ . 
 
If ( )1krank K m+ = , the solution is traditionally 
expressed through the normal equations: 
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Eq. (9) can be solved efficiently using an orthogonal 
factorisation of matrix T

kK 1+  (Lawson & Hanson, 

1995), leading to a solution 1
ˆ

kd  with minimum L-2 
norm: 
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where: 
 11 ++ = kk

TU βγ  

 1 ....
0

T
k

U
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⎡ ⎤
= ⎢ ⎥
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 with m mU ×∈ R  being an upper 

triangular matrix. 
Note that the condition ( )1krank K m+ =  can be 
relaxed. More details about this technique can be 
found in (Lawson & Hanson, 1995).  

From the estimates 1
ˆ

kd  at the different instants 

1,...,k nd= , the determination of matrix i
kE1  is 

straight forward as detailed in (Chen & Patton, 
1999). 

CASE II. It is now assumed that the overall 
disturbance in the system (1) can be de-coupled by 
only the ith sub-model corresponding to the most 
dominant rule, i.e. 01 =l

kd il ≠∀ , 1,...,l N= . The 
problem of unknown input estimation is again an 
optimisation task such that: 
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As described above, the solution with the minimum 
L-2 norm is computed via LS methods (Lawson & 
Hanson, 1995): 
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with 1 1[ ]i i m n
k kK Cα ×

+ += ∈ R , nm ≤ . 

CASE III. The fault distribution matrix 1
l
kE  is 

supposed to be constant over time for each fault 
scenario. Therefore, for a particular fault scenario i , 
(1) becomes: 

 ( ) 111

2

l l l l c l i
kk k k k k

l l l l
mk k k k

x A x B u E i f
y C x w

+⎧ = + +
⎨

= +⎩
  (14) 

where 1,...,i M=  is the fault scenario number (see 
Fig. 1). For fault scenario i, the output error 

1
i m
kε + ∈ R  is: 
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with ( ) ( ) ( ) ( )1 2
1 1 1 1...

TT T TN nN gE i E i E i E i ×⎡ ⎤= ∈⎣ ⎦ R  
 
If one chooses 1

i
kf  as a scalar (which means 1g = ) 

(Chen & Patton, 1999), then: 
 ( )1 1 1 11

i i
k k kk f E iε β + ++ = − Κ . 

The optimisation problem that is solved now can be 
expressed as: 
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where 

( ) ( )1

TT Ti i i m nd
ndε ε ε ⋅⎡ ⎤= ∈⎣ ⎦L R , 

 
1 1 1

1

i

nd m nN

i
nd nd

f

f

⋅ ×

Κ⎡ ⎤
⎢ ⎥Κ = ∈⎢ ⎥
⎢ ⎥Κ⎣ ⎦

M R , 
1

m nd

nd

β
β

β

⋅

⎡ ⎤
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥⎣ ⎦

M R . 

Note that it is quite evident that Eq. (16) can be 
solved using a LS method, as previously shown. 

6.  DESCRIPTION OF THE APPLICATION 

These results are now applied to a benchmark 
described in (DAMADICS Benchmark definition, 
ver.1.0. 2003). This study is based on a non-linear 
electro-pneumatic flow control valve at the Lublin 
sugar plant in Poland. This factory produces 50,000 
tonnes of sugar annually (DAMADICS RTN 
Information Web site, 2003). The plant consists of a 
large number of evaporization sub-processes and 
boiler houses, heaters and valves. Although it is not 
economically possible to monitor all the valves, the 
main idea is to apply FDI techniques to a few of the 
“critical” valves (as these also involve several 
important process variables) to devise a powerful 
means of monitoring the process itself. For the 
purpose of this paper one valve has been selected as 
shown in Fig. (2). 

 
Fig. 2: Schematic diagram of the flow control valve 

 
The process considered for FDI has four inputs and 
two outputs. The process inputs are the control value 
(u1 = ‘cv’), the inlet pressure (u2 = ‘P1’), the outlet 
pressure (u3 = ‘P2’) and the temperature (u4 = ‘T’), 
while the outputs are the stem displacement of the 
electro-pneumatic servomotor (y1 = ‘Xsd’) and the 
liquid flow through the valve (y2 = ‘1-F’). A non-
linear SIMULINK model (DAMADICS Benchmark 
definition, ver.1.0. 2003) is used to generate the 
faulty data. A detailed fault description is given in 
the EC Framework 5 DAMADICS benchmark study 
definition referred above. 

7.  RESULTS 

The fault scenario considered here corresponds to the 
valve clogging (referred as “Fault 1” in the 
DAMADICS benchmark). The fault distribution 
matrices 1

l
kE  are computed thanks to CASE III in 

section 5. Their performances are compared with the 
matrices previously computed with a Nelder and 

Mead method (Uppal & Patton, 2004; Uppal, Patton & 
Witczak, 2004). 

Table 1 gives a comparison of the results achieved 
with both methods. The LS method reaches the 
unique solution (with minimum L-2 norm when 
necessary) while the Nelder and Mead technique 
does not produce a satisfactory result. Actually, the 
exit result is nothing but an intermediate result (even 
in the last case where the number of call to the 
function is equal to 106 and the tolerance on the 
solution is 10-15) because the optimization task exits 
with the maximum number of iteration being 
exceeded. 

Moreover, in a computational cost point of view, the 
LS method is infinitly more efficient than the Nelder 
and Mead approach. This second advantage is of 
interrest when on-line re-computation of the fault 
distribution matrices are performed. 

Lastly, the LS approach has shown that the 
optimization problem has potentially an infinity of 
solutions when the Least Squares matrix is 
numerically rank deficient. In this case, the Nelder 
and Mead optimization method cannot find in a 
proper way any minimum. 

Note that in this example zero initial conditions were 
used. The choice of initial conditions does affect the 
result, as also seen experimentally. However, as long 
as the model outputs quickly converge to that of the 
system, and sufficient input data is used for 
determining the fault/disturbance distribution 
matrices, the obtained direction should be close to 
the desired optimum. 
 

Table 1: comparison of optimization results. 

 
Criterion at the 

exit of the 
optimization 

Main optimization 
parameters 

LS method 3.0834  

78.64 N = 500, TolX = 10-10

17.03 N = 103, TolX = 10-10

9.6435 N = 104, TolX = 10-10

9.6435 N = 105, TolX = 10-10 

Nelder and 
Mead 

optimization 
technique 

9.6435 N = 106, TolX = 10-15 

 
Figure 3 shows the outputs of the system and of the 
model in the presence of fault 1 without decoupling 
(for details on decoupling techniques used, see Uppal 
& Patton 2004). Note that the data correspond to 
different operating points. Figure 4 and 5 show the 
outputs of the model and of the system in the 
presence of fault 1, the decoupling matrices being 
computed respectively by the LS formulation given 
in CASE III and a Nelder and Mead technique (with 
N = 1000 and TolX = 10-10).  
 
It is quite evident that the results achieved in figure 4 
are better than those obtained with the Nelder and 
Mead approach. Note that when N increases and 
TolX decreases, both plots seem to be equivalent. 
However, the norm of the error vector is much more 
smaller with the LS approach (see table 1). 
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Fig. 3: Output of the system and of the model in 

presence of fault 1 without decoupling 
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Fig. 4: System & model outputs in presence of fault1 

with decoupling using LS formulation 
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Fig. 5: System & model outputs in presence of fault1 
with decoupling using Nelder & Mead optimization  

 
Real data have been used with the NFDFDS scheme 
(Uppal & Patton 2004; Uppal, Patton & Witczak, 2004). 
However, this particular experiment with numerical 
improvement only involves simulated data. 

8.  CONCLUSION 
This paper has given a new formulation of the 
computation of the disturbance and distribution 
matrices as a Least-Squares problem. It has been 
shown de novo that the original problem to be solved 
is linear in unknown parameters and consequently a 
Least-Squares approach is the most efficient 
compared with any other non-linear optimization 
technique.  This facilitates the computation of the 
unique minimum L-2 norm solution when the Least-
Squares matrix is rank deficient. The computational 
cost is greatly reduced compared with previous 
approaches.  Hence, the LS approach allows an on-
line update of the disturbance and distribution 
matrices.  This is an important consideration in view 
of the apparent design and computational complexity 

of NF modelling and FDI methods, especially when 
integrated with the robust UIO problem. 
 

9. ACKNOWLEDGEMENTS 
The authors acknowledge funding support under the 
EC RTN contract (HPRTN-CT-2000-00110) 
DAMADICS and to the Dora Jones Trust of Hull 
University for funding support to Prof. Suzanne 
Lesecq whilst visiting University of Hull.   

10. REFERENCES 
Brown M & Harris C J, (1995), Neuro-fuzzy adaptive 

modelling and control, Prentice Hall, ISBN 
0131344536. 

Chen J & Patton R J (1996), Optimal filtering & robust 
fault-diagnosis of stochastic systems with unknown 
disturbances, IEE Proc.-D: Contr.Theory & Appl. 143 
(1): 31-36. 

Chen J & Patton R J, (1999), Robust Model Based Fault 
Diagnosis For Dynamic Systems, Kluwer Academic 
Publishers ISBN 0-7923-8411-3. 

DAMADICS Benchmark definition, ver.1.0. (2003), 
‘http://diag.mchtr.pw.edu.pl/damadics/’, Institute of 
Automatic Control and Robotics - Warsaw University 
of Technology, accessed Dec 2004. 

DAMADICS RTN Information Web site, (2003), 
‘http://diag.mchtr.pw.edu.pl/damadics’, Institute of 
Automatic Control and Robotics - Warsaw University 
of Technology, last checked Dec 2004. 

Dasgupta D & Michalewicz Z, eds., (1997), Evolutionary 
Algorithms in Engineering Applications. Spring-
Verlag, New York, NY. 

Hagan M T, Demuth H  & Beale M (1996), Neural 
Network Design, PWS Publishing Company, Boston, 
MA, ISBN 0-534-94332-2. 

Jang J S R, Sun C T & Mizutani E, (1997), Neuro-Fuzzy 
and Soft Computing, Prentice-Hall, Inc., New Jersey, 
ISBN 0-13-261066-3. 

Lawson C & Hanson R, (1995), Solving Least-Squares 
Problems, Prentice Hall, Englewood Cliffs, N. J., 1974 
(2nd edition, Philadelphia, Society for Industrial & 
Applied Mathematics, ISBN: 0898713560). 

Patton R J, Frank P M & Clark R N (eds), (1989), Fault 
Diagnosis in Dynamic Systems, Theory & 
Applications, Prentice Hall, NY. 

Uppal F J & Patton R J, (2005), A hybrid fault diagnosis 
approach applied to electro-pneumatic valves in sugar 
process, Special Issue on Condition Monitoring, Int. J. 
of Adaptive Control and Signal Processing (to appear). 

Uppal F J, Patton R J & Witczak M, (2005), A neuro-fuzzy 
multiple-model observer approach to robust fault 
diagnosis: based on the DAMADICS benchmark, In 
Special Issue on: The DAMADICS Benchmark 
Problem Development and Application of Methods for 
Actuator Diagnosis in an Industrial Control Systems: 
The DAMADICS Benchmark Study, Int. J. Control 
Engineering Practice (accepted for publication). 

Walsh G R (1975), Methods of Optimisation, John Wiley, 
Chichester, UK. 

Witczak M, Korbicz J, Mrugalski M &  Patton R J, (2003), 
A GMDH neural network-based approach to robust 
fault diagnosis: Application to the DAMADICS 
benchmark problem, In Special Issue on: Development 
and Application of Methods for Actuator Diagnosis in 
an Industrial Control Systems: The DAMADICS 
Benchmark Study, Int. J. Control Engineering Practice 
(to be published in 2005). 


