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Abstract: Linear Quadratic Differential games have been used to model economic
and other conflict situations. A salient feature of these analyses was that the
interval of play was fixed (possibly inifinite), and known to both players. This
paper introduces a linear quadratic differential game where only the probability
density of the terminal time is known to the two players. The paper’s results
are used to derive a differential game based guidance law for uncertain time of
intercept. Copyright c©2005 IFAC
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1. INTRODUCTION

Since its introduction in (Ho et al., 1965), and
in (Bryson and Ho, 1969) linear differential
games have been used in various situations. Fur-
ther properties of linear quadratic differential
games were developed in (Bernhard, 1979) and
(Mageirou, 1976). The purpose of this paper is
to introduce a linear quadratic differential game
where the terminal time is unknown by the two
players. Each of the players knows only the prob-
ability density of the terminal time.

There are two features of the terminal time un-
certainty that are explicitly assumed here:

• Both players are initially supplied with the
probability density function of the terminal
time.

• The players derive no additional information
about the terminal time from their observa-
tions.

The first treatment of a linear quadratic prob-
lem with an uncertain terminal time was in
(Sivan, 1966). In (Rusnak, 2004) a one sided linear
quadratic optimization problem was solved and
applied to missile terminal guidance. Previous to
(Rusnak, 2004) it had been known that modern

guidance laws were sensitive to errors in termi-
nal time, (Nesline and Zarchan, 1981). A modern
guidance law with reduced sensitivity to uncer-
tainty in terminal time was suggested in (Ben-
Asher and Yaesh, 1998).

The remainder of this paper is organized as fol-
lows: In the next section, the problem is stated.
Then the solution of the problem is presented.
This is followed by the the application of these
results to the terminal guidance problem.

2. PROBLEM STATEMENT

The differential game is played by two players,
a pursuer and an evader, denoted as P and E.
P selects the control variable u and E selects
the control variable v. They jointly control the
dynamic system

ẋ = Ax + Buu + Bvv. (1)

Player P’s aim is to minimize and player E’s aim
is to maximize the expected value of the cost
function J(T ),



J(T ) =
1

2
x(T )T G(T )x(T )+

1

2

T
∫

0

(

xT Qx + uT Ruu − vT Rvv
)

ds
(2)

Neither player knows the terminal time, T , but
both players are aware of a common probability
density, p(T ) of the terminal time. It is assumed
that the matrices, Q, Ru, and Rv are defined
for all values of the terminal time, T such that
p(T ) > 0.

3. THE SOLUTION

The basic method of the solution is to explicitly
calculate the expected value of the criterion func-
tion J , and observe that after the calculation the
problem is equivalent to a differential game played
over a fixed (possibly infinite) interval.

3.1 The details of the solution

The expected value of J is,

E{J} =
1

2

∞
∫

0

x(T )T Gx(T )p(T )dT+

1

2

∞
∫

0

T
∫

0

(

xT Qx + uT Ruu − vT Rvv
)

p(T )dsdT

(3)

Interchanging the order of the integration the
expression for E{J} becomes,

E{J} =
1

2

∞
∫

0

x(T )T Gx(T )p(T )dT+

1

2

∞
∫

0

∞
∫

s

(

xT Qx + uT Ruu − vT Rvv
)

p(T )dTds

(4)

Define the following quantities:

Θ(t) = Gp(t),

Ψu(t) =

∞
∫

t

Rup(s)ds,

Ψv(t) =

∞
∫

t

Rvp(s)ds,

Φ(t) =

∞
∫

t

Qp(s)ds.

(5)

Then E{J} may be expressed as

E{J} =

1

2

∞
∫

0

(

xT (Θ + Φ)x + uT Ψuu − vT Ψvv
)

ds
(6)

Equation (6) is just the cost function for a stan-
dard linear-quadratic differential game. It’s solu-
tion, and properties are then the same as that of
a standard linear quadratic differential game. In
particular the differential game has a well defined
solution provided the Riccati differential equation,

−Ṗ = PA + AT P − (Θ + Φ)

+P
(

BuΨu
−1Bu

T − BvΨv
−1Bv

T
)

P
(7)

with initial condition P(Tf ) = 0, where Tf is a
time such that p(t) = 0,∀t > Tf . The two players’
optimal strategies are

u = −Bu
T Ψu

−1Px (8)

and

v = Bv
T Ψv

−1Px (9)

4. APPLICATION TO GUIDANCE

The underlying model used for studying the guid-
ance laws in the face of uncertainty in the ter-
minal time is the same one used in (Bryson and
Ho, 1969) and (Ho et al., 1965). It is assumed that
the pursuer and its target are near collision course.
y and ẏ are the relative position and velocity of
the evader and the pursuer perpendicular to the
initial line sight. Then

˙[ y
ẏ

]

=

[

0 1
0 0

] [

y
ẏ

]

+

[

0
1

]

u +

[

0
−1

]

v (10)

and

G(T ) =

[

gf 0
0 0

]

(11)

where gf is the weight coefficient of the quadratic
term in the miss distance.

The feedback law here is a linear combination of
the distance and velocity y and ẏ perpendicular
to the initial line of sight. In the case that there is
no uncertainty in the terminal time it was shown
in (Bryson and Ho, 1969) that the guidance law
obtained is in fact proportional navigation, which
depends only on the line of sight inertial angular

rate. However, even if there is a small uncertainty
in the terminal time this is no longer the case.
Nevertheless in order to compare the present
results to the classical proportional navigation it
is desired to express the feedback law in terms
of the line of sight angle and angular rate. For
this purpose it is assumed that the extent of the
uncertainty in the terminal time is small with
respect to the initial interval.



4.1 Approximations for Small Uncertainty in Time

to go

For the remainder of the paper it is assumed that
the closing velocity, Vc may be considered con-
stant during the time interval of the differential
game. Then in general the line of sight angle, λ is

λ =
y

Vctg
, (12)

where tg is the time until the termination of the
game. Expanding λ to first order in tg and using
the remainder theorem it is noted that

λ = λ(tg0) −

(

y

t2g1Vc

)

∆tg, (13)

where tg1 is a point within the time to go interval
uncertainty. But this may be rewritten as

λ = λ(tt0) − λ(tg1)
∆tg
tg1

(14)

Therefore it may be concluded that as long as
∆tg

tg

¿ 1 the error in the approximating λ by

equation(12), within the uncertainty region of tg

is small.

A similar bound is required in approximating the
inertial line of sight rate, λ̇. This is obtained by
differentiating equation(12),

λ̇ =
1

Vc

(

yt−2
g + ẏt−1

g

)

(15)

Expanding λ̇ to first order in tg and using the
remainder theorem,

λ̇(tg) = λ̇(tg0) +
1

Vc

(

−2t−3
g1 − ẏt−2

g1

)

∆tg (16)

where tg1 is a point within the time to go interval
of uncertainty. But equation(16) may be rewritten
as

λ̇ = λ̇(tg0) −

(

λ̇1 +
λ1

tg1

)

∆tg
tg1

(17)

Therefore, it may be concluded that as long as

∆tg
tg

¿ 1 (18)

λ and λ̇ may be approximated with small error by
using a single time point, tg within the time to go
uncertainty region.

4.2 The Guidance Law in Terms of λ and λ̇

In order to study the influence of the time to
go uncertainty on the optimal guidance law it is

necessary to express the guidance law in terms
of the line of sight angle, λ and the line of sight
angular rate, λ̇. For this purpose the validity of
inequality(18) is assumed. The guidance law in
equations (8) and (9) is specialized for equation
(10). The pursuer control law may be expressed
as

u = k(u)
y y + k

(u)
ẏ ẏ (19)

and that for the evader,

v = k(v)
y y + k

(v)
ẏ ẏ (20)

The state variables y and ẏ may be expressed in
terms of the line of sight angle and line of sight
angular rate, λ and λ̇ as,

y = Vctgλ (21)

and

ẏ = Vctgλ̇ − Vcλ (22)

In terms of λ and λ̇ the guidance law is

u = k
(u)
λ λ + k

(u)

λ̇
λ̇ (23)

and

v = k
(v)
λ λ + k

(v)

λ̇
λ̇ (24)

where

k
(u)
λ = Vc

(

k(u)
y tg − k

(u)
ẏ

)

(25)

k
(u)

λ̇
= Vctgk

(u)
ẏ (26)

k
(v)
λ = Vc

(

k(v)
y tg − k

(v)
ẏ

)

(27)

k
(v)

λ̇
= Vctgk

(v)
ẏ (28)

4.3 Examples

In this section the effect of the final time uncer-
tainty on the guidance problem presented in this
section is studied. In all the cases the following
parameters are used:

gf = 1012

Ru = 1
Rv = 2
Q = 0

Tf = 2sec

(29)

In all the following examples the discrete Riccati
equation equivalent to the continuous time Riccati
differential equation(7) was solved with a sam-
pling time of 1mSec.



4.3.1. The Classical Differential Game Guidance

Law In this first example there is no uncertainty
in the terminal time,

p(T ) = δ(T − Tf ) (30)

If in addition we let gf → ∞, then the solution is
simply the well known classical differential game
law:

k
(u)
λ = 0

k
(v)
λ = 0

(31)

k
(u)

λ̇
=

3Vc

1 − Ru

Rv

k
(v)

λ̇
=

3Vc

Rv

Ru

− 1

(32)

A more common description of a guidance law is
the navigation constant N ′, which is,

N (·)′ =
1

Vc

k
(·)

λ̇
(33)

and the gain

N
(·)
λ =

tg
N (·)′Vc

k
(·)
λ (34)

In terms of N ′ and Nλ the command u is

u = N ′Vc

(

λ̇ + Nλ

λ

tg

)

(35)

In this case, where there is no uncertainty in the
terminal time, the gains N ′and Nλ are plotted
in figure(1). The upper plot shows the navigation
ratio (N ′) for the pursuer: dotted line; and, for
the evader: full line. The lower plot shows the the
gain Nλ, (in this case Nλ = 0).

4.3.2. Uniform Uncertainty of 10mS The present
and the following examples model the effects of
a (10mS) uncertainty on the optimal guidance
gains. When the probability density of the ter-
minal time is uniformly distributed over a 10mS
time interval, then the gains shown in figure(2)
are obtained. The graphs plotted have the same
description as in figure(1): The upper plot shows
the navigation ratio (N ′) for the pursuer: dotted
line; and, for the evader: full line. The lower plot
shows the gain Nλ. Note that even such a small
uncertainty has a very substantial effect on the
guidance gains. In particular there is now a non-
zero gain for the Nλ term.

4.3.3. Discrete Uncertainty of 10mS In the case
at hand the probability density of the terminal
time is

p(T ) =
1

2
δ(T − Tf ) +

1

2
δ(T − Tf − 0.01) (36)
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Fig. 1. The guidance gains for the classical differ-
ential game.
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Fig. 2. The guidance gains for uniform uncertainty
of 10mSec.
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Fig. 3. The guidance gains for discrete uncertainty.

The gains for this case are presented in figure(3).
The graphs plotted have the same description as
in figure(1): The upper plot shows the navigation
ratio (N ′) for the pursuer: dotted line; and, for the
evader: full line. The lower plot shows the gain Nλ.

4.3.4. Non-symetric Uncertainty In the devel-
opment in section (3) it is not necessary to as-
sume that the two players’ uncertainty probabil-
ity densities are identical. In fact a very similar
development can be made for the case that the
two players have different probability densities for
the termination time of the game. The details are
presented in the Appendix.

In the guidance problem if each player is aware
of the other’s information structure, for example
if each knows the additive noise of his own as
well as his opponent’s observation noise, then each
player is able to calculate his own as well as his
opponent’s probability density, and hence both his
own and his opponent’s cost function.

In the present scenario the minimizing player’s
probability density is

pu(T ) =
1

2
δ(T − Tf ) +

1

2
δ(T − Tf − 0.1) (37)

and the probability density of the maximizing
player is

pv(T ) =
1

2
δ(T − Tf ) +

1

2
δ(T − Tf − 0.2) (38)
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Fig. 4. The guidance gains for non-symetric un-
certainty.

The following values for the parameters in the
Appendix were used in the example:

Gu = Gv =

[

1012 0
0 0

]

Qu = Qv = 0

Ru = 1,Rv = 2
Tf = 2sec

(39)

The guidance gains are presented in figure(4).
The approximation condition equation(18) re-
stricts the validity of the approximation of the
line of sight angle and angular rate equations(12)
and (15) to the first few tenths of a second from
the start of the game. Note, however that this va-

lidity condition applies to the gain N (·)′ and N
(·)
λ

calculations only, the gains k
(·)
ẏ and k

(·)
y are valid

regardless of the approximation in inequality(18).
The graphs plotted have the same description as
in figure(1): The upper plot shows the navigation
ratio (N ′) for the pursuer: dotted line; and, for the
evader: full line. The lower plot shows the gain Nλ.

4.4 Discussion

The most surprising feature of the guidance laws
developed here is the large change that they
undergo for even a small (10mSec) uncertainty in
the terminal time. The main change is that the



guidance law depends on λ as well as on λ̇. In fact
the guidance laws have the form of the well known
“rendez vous” guidance law:

u = 4Vc

(

λ̇ +
1

2

λ

tg

)

(40)

which is obtained by setting

G(T ) =

[

gf 0
0 ḡf

]

(41)

in equation (11), and letting both gf and ḡf tend
to infinity. That is, the pursuer attempts to cause
the intercept to occur along the line of sight,
while the evader tries to counter and to drive the
intercept out of this course. The miss results from
the uncertainty in the intercept time multiplied by
the the relative velocity perpendicular to the line
of sight. This explains the results in (Ben-Asher
and Yaesh, 1998) and (Rusnak, 2004).

Obseve that Nλ in figures (2), (3), and (4) is 1/2
for tg À 0. This is the same value that appears in
equation(40).

5. SUMMARY

This paper introduced linear quadratic differential
games with uncertain terminal time. An explicit
formula for the solution of this class of differential
games was presented. The results were applied to
a guidance problem in a differential game setting.
It was shown that even a very small uncertainty
in the intercept time profoundly influences the
guidance law.

Appendix A. NON-SYMETRIC
UNCERTAINTY

In the more general case where each has a prob-
ability density for the terminal time, the cost
function is

J =
1

2
x(Tu)T Gux(Tu)+

1

2

Tu
∫

0

(

xT Qux + uTRuu
)

ds+

1

2
x(Tv)Gvx(Tv)+

1

2

Tv
∫

0

(

xT Qvx − vT Ruv
)

ds

(A.1)

The expected value of J is given by,

E(J) =

∞
∫

0

∞
∫

0

Jpu(Tu)pv(Tv)dTudTv (A.2)

where pu(Tu) and pv(Tv) are the probability den-
sity functions of the termination times for the two
players. The derivation is similar to that described
in Section(3), but with the symbols Θ, Ψu, Ψv,
and Φ in equation(5) replaced by

Θ(t) = Gupu(t) + Gvpv(t)

Ψu(t) =

∞
∫

t

Rupu(s)ds

Ψv(t) =

∞
∫

t

Rvpv(s)ds

Φ(t) =

∞
∫

t

Qupu(s)ds +

∞
∫

t

Qvpv(s)ds

(A.3)

Once the substitutions are made, the Riccati
differential equation(7), and the control strategies
for the two players, equations(8) and (9) remain
unchanged.

Note that the problem described in Section(2) is
obtained by setting

p(·) = pu(·) = pv(·)
G = Gu + Gv

Q = Qu + Qv

(A.4)
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