

REMARKS ON IMPROVING OF OPERATION SPEED OF THE PLCs

Mirosław CHMIEL, Edward HRYNKIEWICZ, Adam MILIK

Institute of Electronics, Silesian University of Technology,
Akademicka 16, 44-100 Gliwice, Poland

<Miroslaw.Chmiel, Edward.Hrynkiewicz, Adam.Milik>@ polsl.pl

Abstract: The paper presents two different approaches to optimising operation speed of
Programmable Logic Controllers. First approach optimizes architecture of the CPU and the
program execution. It shows the two processors bit-byte architecture which support of
concurrent execution of bit and byte computation tasks. Second approach bases on hardware
implemented control algorithm in reconfigurable platform based on FPGA. In second
solution high performance is achieved by fully concurrent hardware execution of algorithm.
Specific implementation tools enables typical PLC programming for hardware target
platform. Copyright © 2005 IFAC

Keywords: Programmable Logic Controller; Central Processing Unit; Bit-Byte Structure of
CPU; Control Program; Scan Time; Throughput Time; Reconfigurable Logic Controller;
Programmable Logic Devices; Field Programmable Gate Arrays; Parallel Processing

1. INTRODUCTION

The Programmable Logic Controllers (PLCs)
introduced at the end of the sixties totally have
changed the used equipment in automation control
systems. Nowadays the PLCs are commonly used in
civil engineering (smart buildings), industry,
automotive (special vehicles) and many other areas.
Due to different places of application PLC should
meet a lot of different and often very difficult to fulfil
requirements. One of the main requirements is speed
of operation that is often expressed by so-called scan
time – time of execution of one thousand of control
instructions. Due to this fact it is important to have
such CPU of a PLC which features with a structure
enabling of fast control program execution. Many
manufacturers deliver their PLCs with CPU based on
microprocessor (Michel, 1990). Also very often
manufactured CPUs are based on so-called bit-byte
structure (Getko, 1983; Chmiel and Hrynkiewicz,
1999; 2001). In bit-byte structure of a CPU tasks

operating on discrete input/output are executed by
bit-processor. Such processor may be implemented in
programmable structures as PLD or FPGA devices
(Chmiel et. al., 1995; Hrynkiewicz, 1997). The byte
processor – built on base of standard microprocessor
– is used for control of analogue objects, numeric
data processing and for execution of the instructions
indirectly connected to a user program but related to
the operating system tasks, as for example testing of
PLC hardware, timers servicing, LAN servicing,
communication to the supervision and monitoring
system (SCADA) and so on. If the CPU is based on
byte microprocessor only, this device executes all
CPU functions. This is not convenient for carrying
out instructions on discrete inputs, as it is necessary
to sense the particular bits from entire word, what is
inefficient and time consuming. For this reason, there
are manufacturers, whose provide so-called logic
solver which can be used for execution of logic
instructions if CPU is based on byte processor only.
One should realise that in this way a kind of bit-byte
structure of CPU is created. It should be added that
from the methodological point of view bit-byte

structure of CPU seems to be very natural. Bit
processor executes logic control while byte processor
deals with numerical control (for example it executes
digital PID algorithm). Because such CPU is also
cost effective – the structure is relatively simple – it
is interesting to point the possibility of improving of
an operating speed of a PLC with such CPU
architecture.

Program
Counter

Program
Memory

Bit
Processor

Byte
Processor

Process I/O
Image

Standard
Procedures

Memory

Instruction
Decoder

System Bus

Fig.1. Block diagram of one bus CPU [Getko, 1983]

The main drawback of traditional PLCs is the fact
that the user (control) program is executed in serial-
cyclic mode. It means that the inputs/outputs are
processed every time interval, which is equal to
a time of control program swap. If the control object
is fast and user program is large it happens that some
changes of inputs are not observed. An improving of
the performance in this area may be done by some
programming tricks and tips as segmentation of
a user program, many times calling of the same
segments, utilisation of released (controlled)
segments, utilisation of interrupt system and so on
(Modicon, 1990). The radical solution of this
problem can be achieved by introducing parallel
processing of a user program. However parallel
processing require completely new PLC hardware
platform. Tens years ago control circuits were
designed as hard-wired systems. Logic controller
offers new quality of design of control units by
system integration and by writing of a program
instead of assembling an electric or electronic circuit.
Nowadays this new platform is Field Programmable
Gate Array (FPGA). Hardware functionality of
FPGA can be modified in programmed way. Similar
to loading of a new program to the controller loading
a new configuration to the FPGA allows changing its
functionality.
The presented paper deals with these two problems –
the improving of operation speed of a bit-byte CPU
of a PLC and utilisation of FPGA for PLC design and
construction.

2. STRUCTURE OF BIT-BYTE CENTRAL
PROCESSING UNIT

As it was mentioned above in the simplest case each
programmable control system might be realised as
microprocessor device. But we have to remember
about applications in which we are going to use a
logic controller. Those applications force special
requirements and constraints. To control a real object
it is necessary to process a great number binary
inputs and calculates binary outputs while standard
microprocessor (or microcontroller) operate mainly
on bytes. Instruction list of these devices is optimised
for operation on bytes or words (some of them can
carry out complicated arithmetical calculation)
variables that are not required in this case. Logic
instructions like AND or OR on individual bits take
the same amount of time as the instructions on a
bytes as it is necessary to extract suitable bits from
the word(s). When we take under consideration the
binary inputs and outputs it is necessary to realise

that they reach number of thousands. In such cases
parallel computation of all inputs and outputs is
impossible. Therefore the inputs and outputs must be
scanned and updated sequentially. If we would like to
achieve good control parameters the instructions on
bits should be done very quickly. Creation of
specialized bit-processor, which can carry out bit
instruction very fast, is fully reasonable. If there is a
need of computation of byte data for example from
analogue to digital converters or external timers, it is
required to use of additional 8,16 or even 32 bits
processor or microcontroller. General structure of
that device was presented in Fig.1. (Getko Z., 1983).
Presented solution consists of two processors with
own instruction set. Instruction decoder recognises
for which processor fetched instruction is
appropriated and sends activation signal to it.
Basic parameter that was taken under consideration
was program execution speed. Program execution
speed is mainly limited by access latency of both
processors to the internal (e.g. counters, timers) and
external (e.g. inputs and outputs) process variables.
The program memory and the instruction fetching
circuitry also influence system performance. In order
to support cooperation of both processors without
conflicts and maintain their concurrent operation
following assumptions were made:
• separate address buses for bit and byte processors,
• separate data buses: 1 bit wide for bit processor and

8 bit wide for microcontroller,
• separate control buses with:

• read and write signals for byte processor,
• read and write signals for bit processor,
• refresh signal for latching states of all inputs

and outputs at once,
• error signal for immediate switching off of all

external modules of controller.
Additionally in basic solution the following problems
were taken for research and design works. These
problems are structure of a memory (memories),
instruction fetching by both processors, information

Bit
Processor

FbB

Byte
Processor

TRFbB

EMPTYFbB

RDFbB

READYFbB

TFBb

READYFBb

WRFBb

EMPTYFBb

NEXT
GO

Instruction
Buffer

Fb

FBb

FB

Byte
Processor

Data
Memory

Byte
Processor
Program
Memory

Byte
Processor
Standard

Procedures
Memory

Bit
Processor
Program
Memory

Bit
Processor

Data
Memory

Byte In/Out BusBit In/Out Bus

Fig.2. Block diagram of parallel CPU structure

exchange rules between processors and access to
common resources (timers, counters and flags).
The CPU structure, which meets the above
requirements, is shown in Fig.2. The solution
assumes main program memory for both processors
(in Fig.2 this memory is marked as bit processor
program memory). Each of them has unique
instruction codes. Bit processor fetches instructions
code and recognise it. If fetched instruction is
assigned to this processor, it is immediately executed.
In other cases it is send to the second processor.
The unit is equipped with 3 memory banks for
control program:
• bit processor program memory,
• byte processor program memory,
• byte processor standard procedures memory.
Such CPU has three states of operation:
• both processors execute control program,
• one processor operates,
• bit processor executes control program while byte

processor actualises the timers for example.
Bit processor delivers instructions to the byte
processor through the instruction buffer informing
about it by means of NEXT signal. On the other hand
byte processor after accepting of an instruction sends
to the bit processor GO signal.
The presented solution is additionally equipped with
the system of fast internal condition flip-flop state
exchange. This system – in simply words – causes
that the processors do not wait for finishing their
instructions but they execute next instructions up to
the moment when instruction of waiting for result of
instruction carried-out by the second processor will
occur. The processors can exchange the state of their
internal condition flip-flops (Fb, FB) via buffering
condition flip-flops FbB and FBb. This justifies of
using special instructions that are marked in Fig.2.
From a side of bit processor there are two
instructions: TRFbB that allows writing state of Fb to
FbB and TFBb that allows testing state of FBb flip-flop.
Similar set of two instructions is implemented for the
byte processor. There are RDFbB that reads contents
of FbB and WRFBb that transfers content of internal
condition flip-flop to FBb.
This system allows parallel work of both processors
with state of condition flip-flops exchange, but there
is two following situations which cause that the one
processor has to wait for the other:
• one processor has not yet executed instruction

expected by the second processor and this one have
to wait for the result – new state of buffering flip-
flop is not ready (READYFbB=0 or READYFBb=0),

• second processor has not yet received the previous
state of buffering flip-flop and the first one can not
write the next state (EMPTYFbB=0 or
EMPTYFBb=0).

To exclude waiting states the programs has to be
written and compiled in such a way to get these two
processor working possibly parallel. However in the
second case one can take into account the solution
basing on increased number of the accessible

condition flip-flops exchange or on assignment of
common data memory area for the condition data
exchange purpose. At that time it appears the need
for assignment of the condition flip-flop to every
task. One can try to solve the condition flip-flop
problem in the following ways:
• the fixed marker can be assigned to every type of

instruction or to each successive task that includes
necessity of condition state exchange. The markers
assignment process can be made by the compiler,

• the second way is to charge the programmer with
the duty of marker assignment. Marker contains the
instruction execution result and on the other hand
marker state influences on a way of instruction
execution. In similar way the Modicon PLCs are
programmed [Modicon, 1990] – output state of
operational blocks can be assigned to the marker by
programmer himself.

First solution presented above can be implemented in
hardware. Number of markers must be large enough
to transfer all possible condition in the longest
program. In general number of used markers is
proportional to the length of program that is limited
by capacity of memory.
In one possible solution condition flip-flops are
grouped in two sets that passing information in both
directions between two processors. The simplest
implementation writes results of instruction to the
queue. The opposite processor reads results from the
queue as needed. Such a system may be implemented
as a 1-bit wide FIFO register that allows storing all
markers in order of their appearing. Processor writes
condition state to the flip-flop pointed by condition
counter. Opposite processor that reads condition state
selects current flip-flop by its condition counter. In
this way circular buffer is created that allows for
reading and writing from different flip-flops.
This solution offers extremely fast operation
requiring only one clock cycle, for condition state
exchange, from side of each processor. Unfortunately
this solution is expensive in comparison to common
memory that also can be used as memory for timers,
counters and flags. The memory accessed by two

processors requires special construction or arbitration
system. In order to avoid arbitration process in access
cycle special two gate memory must be used that
allow simultaneous access to memory cells by two
processors without conflicts in concurrent read and
write operation.

Analogue Inputs

Digital Inputs

Analogue
Outputs

Digital Outputs

Input
Interface

PID

TIMER

COUNT.

Processing Unit
Reconfigurable Processing System

Free Input
Slot

Free Output
Slot

Configuration manager

Fig.3. Compact reconfigurable logic controller block
diagram

The proposed CPU can work in one of two modes:
• the parallel–serial work of the processors with

transferring instruction from bit processor to byte
processor through instruction buffer,

• the fully parallel work of the processors with two
programs located in separate program memory
banks – bit processor program memory and byte
processor program memory. Processors have to
wait for each other only when buffering condition
flip-flops are not ready or not empty.

3. RECONFIGURABLE LOGIC CONTROLLER

Logic controller designed with use of FPGA circuits
was called reconfigurable. This term describes a
method of program execution and implementation
(Hrynkiewicz and Milik 2000a; 2000b; 2001). In
Programmable Logic Controller program is
represented as a sequence of instruction executed on
given hardware platform (CPU + memory + IO)
(Michel, 1992). In Reconfigurable Controller
program is represented as a hardware structure that is
written into programmable resources of the FPGA
device (Brown, et al., 1992). In this solution is
obtained custom digital circuit dedicated to perform
given control function.
Before the FPGA device becomes a Reconfigurable
Logic Controller several problems and limitations
must be solved. Logic Controller for automatic
control designers consists of two basic components,
which are inseparably connected. Those components
are hardware platform and programming tools. Easy
of control program modification and execution make
logic controllers so powerful and popular.
Reconfigurable Logic controller bases on the same
components: hardware architecture and programming
environment (Kumar, et al., 1992).

3.1 Compact Reconfigurable Logic Controller
Architecture

General structure of the reconfigurable compact logic
controller is shown in Fig.3. This controller is the
simplest solution and offer shortest throughput time.
Object signals are connected and driven by controller
through conditioning modules for analogue and
digital signals. Modular I/O system allows for
flexible selection of required modules. Each module
is directly connected with reconfigurable processing
system. This allows for parallel reading and writing
of all signals by controller.
All calculations are executed by reconfigurable
processing system. Internal structure of that

component is shown in Fig.4. The processing system
consists of two units. The Input interface unit is
responsible for synchronising external signals to the
internal system clock. The input interface unit is
passing properly timed signals to the processing unit.
The processing unit consists of the user function and
the output register. In general user function can be
any combinatorial or sequential function (FSM). The
output register allows for avoiding unpredicted states
of the controller output caused by propagation
process. This general description of logic controller
allows to calculating throughput time. In case of
reconfigurable logic controller scan time parameter is
not applicable while all processing is executed in
parallel in opposite to standard solutions derived
from microprogrammable technique.
In general case maximal throughput time of the
reconfigurable processing system is given by (1).
 ttTt pQOpIDCLKSYSTHP ++= 2 _max (1)
This equation takes into account propagation delay in
input and output path. This propagation delay for
moderate operating frequencies can be omitted.
Above assumptions allow to calculating roughly
throughput time given by (2).
 Tt CLKSYSTHP 2 _max ≅ (2)
Other important fact in controller performance is
ability of distinguishing changes and pulses applied
to input of controller. As input state is stored in
interface registers minimal pulse width that can be
observed is given by (3).
 Tt CLKSYSPULSE _min = (3)
Where:
TSYS_CLK system clock period
tTHPmax controller maximal throughput time
tPULSEmin minimal duration time of pulse that can be

observed by the controller
tpID propagation time from the input to the D

input of the input flip-flop

D Q
F

PAD D Q

SYS_CLK

DFF2DFFI0

PAD

D Q

DFFIn

PAD

Interface Unit Processing Unit

Reconfigurable Processing System

Fig.4. Reconfigurable processing system block

diagram

tpQO propagation time from the output of Q of the
output flip-flop to the controller output

Fig.6. Ladder diagram editor and high level logic

synthesis tool main window

When fSYS_CLK = 20MHz maximal throughput time of
the controller is no longer then 100ns. The controller
is able to recognise pulses that duration time is no
shorter then 50ns.

3.2 Distributed Reconfigurable Controller
Architecture

Compact architecture is limited to single controller
and is unable to communicate with other controllers.
This limit application area of controller to service a
single processes and also reduces number of signals
that can be connected to it. Adding to the controller
network connection module allows for designing
distributed architecture controller that can consists of
several processing units distributed over area of
controlled system or production process. The
distributed architecture allows for reducing number
and length of wires connecting controller with
sensors and actuators. Not only length of the wire can
be reduced in presented solution but also higher
safety of operation can be achieved. In opposite to
remote I/O in standard controllers in this architecture
distributed intelligence is available.
Architecture of controller is presented in Fig.5. This
architecture is derived from compact solution. Each
controller is able to process delivered information.
The controller treats local and remote data in the
same way. Network interface operates separately
from reconfigurable processing unit. In order to
allow for continues access to remote signals process
image register is designed in a controller. Process
image register also delivers local variables to
network interface. Size of process image register is
variable and is fitted to design requirements during
synthesis process. In each controller is allocated
required set of process image registers that stores
significant for controller data. This allows for
reducing number of logic resources allocated in
FPGA device.
Distributed controllers allow for increased safety of
operation by implementing special algorithms that
are executed in case of disturbances. This allows to
maintain safe operation and safe process shut down.
In order to enable communication with other
controllers network interface was added. Network
communication employs reliable protocol that bases
on token passing. Selection of this protocol allows
for reliable and saves operation of the whole
controller system. One of the controllers is

established master. Master controller is responsible
of performing start up procedure, shut down and
malfunctions processing.
Number of data passed through the network is
reduced due to use of distributed intelligence. It is
very important to reduce number of data that is
exchanged while it allows to reduce throughput time.
Distributed processing units deliver to network
interface partially processed data that allow for
transfer only required part of information. Variable
selection and network interface configuration is done
automatically during synthesis of a controller
(discussed in next paragraph).

4. RECONFIGURABLE CONTROLLER PROGRAMMING

Programmability and programming of the logic
controller is key issue for designers and users. The
reconfigurable logic controller must use the same
programming methods like its ancestors and also
maintain all data processing benefits. Logic
controller programming is specified by IEC-1131-3
standard (IEC,1992).
Reconfigurable Logic Controller is programmed with
use of ladder diagrams (LD). This graphical
representation is widely used by automatic control
designers. In Fig.6 is shown main window of the LD
editor and high-level synthesis tool. Automatic
synthesis process support user in designing its control
algorithm. User can easily place optimised special
function blocks like timers, counters or PID
controllers. Those blocks were carefully designed
and optimised in performance and resource allocation
inside FPGA device.

4.1 Controller synthesis

Network
Interface

Process
Image

Register

Reconfigurable
Processing System

Local
Input/Output

Global Data Exchange
System

R
em

ot
e

co
nn

ec
tio

n

Fig.5. Distributed controller block diagram

Controller synthesis is similar for compilation
process for typical program. Control program
graphically represented by set of components and
connections between them is translated into hardware
structure. Synthesis start form design analysis. In this
step graphical representation of design is converted
into netlist form that can be processed. During netlist
generation basic design rule check (DRC) is
executed. DRC allows determining errors in diagram

drawing or improper use of components. During this
check sourceless, loadless or floating nodes in circuit
are determined also component parameters are
checked (e.g. timer values, counter ranges etc.).
Synthesis can start after netlist generation. During
synthesis process schematic components are replaced
with equivalent electronics components. When direct
translation is completed optimisation process is
started. During optimisation process combinatorial
function are merged and logical constant are
removed. This operation allow for design checking
against logic trimming due to constant propagation or
complemented variable usage or logic optimisation.
Appropriate warnings are printed out for user. When
optimisation step is completed successfully interface
unit is generated. Interface unit synthesis uses only
inputs and outputs that remain active after
optimisation process. Finally after all processes are
completed result is written out in a form of gate level
HDL description. In next step FPGA vendor tools
can implement the controller description. Finally
configuration stream is obtained that represents
physical layout of control algorithm.

5. CONCLUSION

As it was shown the studies on an information
exchange between the processors of the bit-byte CPU
of a PLC leads to the CPU hardware solution which
significantly increases a program execution speed.
The most interesting result is the possibility of fully
parallel work of both processors without waiting one
for the other. Such mode of CPU operation become
possible thanks to realising that for considered
processor the other processor can be treated in the
same way as a controlled object.
The authors have evaluated the operation speed of
controller with all mechanisms presented in section 2
of the paper. In comparison to the standard PLCs like
Siemens S7-224 execution time for the program
containing about 1000 instructions was about 2.8ms
for S7-224 and about 1.7ms for serial-parallel mode
and 1.1ms for parallel mode.
The most profitable idea of improving PLC operation
speed is based on utilisation of FPGA. For
reconfigurable FPGA the PLC built on this platform
is reconfigurable too and thanks to this fact it may be
used in universal applications. Because the control
program (for example in ladder diagram
representation) is translated into hardware
implementation in FPGA a design workbench should
be equipped with special software as for example
XILINX Foundation. As it was said for compact PLC
(PLC based on one FPGA module only) the
throughput time is about 100ns at clock frequency
20MHz which is not very high for nowadays FPGA.
For comparison it is important to realise that Simatic
S5 PLCs executes one instruction only in 1.2µs and
Simatic S7 PLCs executes the same in 100-300ns. A
throughput time for these controllers is created
usually during execution of a lot of instruction.

It should be mentioned about other approach to
improving of PLC operation parameters not
described in this paper. It seems to the authors that
probably good results can be obtained when PLC is
considered as on event driven. It means that the
system executes particular tasks in response to
request on event i.e. particular element change of
state. Main difference is located in events scanning
and triggering technique. This approach requires
design of a new controller platform that allows for
task triggering. Such works are in progress.

REFERENCES

Brown S.D., R.J. Francis, J. Rose, Z.G. Vranesic,

“Field-Programmable Gate Arrays”, Kluwer
Academic Publisher, 1992

IEC, International Electronics Commission,
„International Standard IEC 1131,
Programmable Controllers”, Geneva, 1992

Kumar S., J.H. Aylor, B.W. Johnson, and W.A.
Wulf, “The Codesign of Embedded Systems”,
Kluwer Academic Publisher, 1992

Michel G. “Programmable Logic Controllers –
Architecture and Applications”, John Willey &
Sons, 1992

Modicon 984 Programmable Controller – System
Manual, 1990

Chmiel M., E. Hrynkiewicz, „Parallel Bit-Byte CPU
Structures of Programmable Logic
Controllers”, International Workshop ECMS,
Liberec, Czech Republic, 1999

Chmiel M., E. Hrynkiewicz, „Remarks on Parallel
Bit-Byte CPU Structures of Programmable
Logic Controllers” International Workshop on
Discrete Event System Design, DESDes,
Przytok near Zielona Góra, Poland, 2001

Chmiel M., L. Drewniok, and E. Hrynkiewicz,
„Single board PLC based on PLDs”,
International Workshop on Programmable
Devices and Systems, PDS, Gliwice, Poland,
1995

Getko Z., „Programmable systems of binary control”,
Elektronizacja, WKiŁ, Warsaw, Poland, 1983
(in polish)

Hrynkiewicz E., „Based on PLDs Programmable
Logic Controller with remote I/O groups”,
International Workshop ECMS, Toulouse,
France, 1997

Hrynkiewicz E., A. Milik, “PID Module for
Reconfigurable Logic Controller”, IFAC
Workshop on Programmable Devices and
Systems, PDS, Ostrava, 2000

Hrynkiewicz E, A. Milik, „Modular Reconfigurable
Logic Controller”, 4th Portuguese Conference
on Automatic Control, Controlo’2000,
Guimaraes, Portugal, 2000

Hrynkiewicz E., A. Milik, “Reconfigurable Logic
Controller Architecture, Programming,
Implementation”, IFAC Workshop on
Programmable Devices and Systems,
PDS’2001, Gliwice, 2001

	Introduction
	Structure Of Bit-Byte Central �Processing Unit
	Reconfigurable Logic Controller
	Compact Reconfigurable Logic Controller Architecture
	Distributed Reconfigurable Controller Architecture

	Reconfigurable Controller Programming
	Controller synthesis

	CONCLUSION

