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Abstract: The general problem of assigning the eigenstructure of semi-proper
systems, using state feedback, is first considered. Standard eigenstructure assign-
ment algorithms invariably assume the direct transmission matrix to be null.
Consequently, they are suitable only for strictly proper systems. Algorithms do
exist for assigning the eigenstructure of semi-proper systems, but they suffer from
a lack of visibility and attention has not been paid to certain important aspects
of the problem. A new exposition of the problem is presented here and then used
directly to develop a novel algorithm which overcomes these issues. An extension
to state feedback for semi-proper systems, the pseudo-state feedback case, is then
considered. Copyright c©2005 IFAC
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1. INTRODUCTION AND EXISTING WORK

Standard eigenstructure assignment (EA) algo-
rithms can be divided roughly into two groups:
state-feedback, where the output (C) matrix is
assumed to be an identity and output-feedback,
where assumptions are made only about the num-
ber of inputs and outputs (White, 1995). However,
both groups of algorithms generally rely on the
direct transmission (D) matrix being null. This is
valid only if the system is strictly proper. Given
the multivariable transfer function matrix G(s),
a system is strictly proper if

lim
s→∞

G(s) = 0 (1)

and semi-proper if
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lim
s→∞

G(s) = D ( 6= 0) (2)

Although semi-proper systems are mathemati-
cally feasible, all physical systems are strictly
proper (Skogestad and Postlethwaite, 1996). How-
ever, semi-proper systems are often useful approx-
imations.

For example, an aircraft mathematical model will
often contain several velocity states. Velocities are
almost impossible to measure in the absence of a
fixed reference frame and, therefore, accelerome-
ters are used to obtain state information. Incorpo-
rating the measured accelerations into the model
results in the addition of nonzero entries in the
D matrix. Additionally, many control structures
familiar to designers of classical control systems,
including PID controllers and phase-advance net-
works, involve a differentiation and will have the
same effect. These are all approximations since no
accelerometer or controller has an infinite band-
width. However, the realisation of these differ-



entiations in the form of a semi-proper system
formulation is convenient and, provided that the
bandwidths of the approximated components is
sufficiently high, is fit for practical purposes.

To the authors’ knowledge, the only published
work involving the assignment of eigenstructure to
semi-proper systems is that of Fletcher (Fletcher,
1981a; Fletcher, 1981b). These papers, published
during the formative years of EA, are concerned
with output-feedback pole placement rather then
EA specifically. Eigenvectors are selected but no
mention is made of their importance to the design
or solution, or how they should be chosen. More-
over, Fletcher’s technique is essentially a protec-
tion method (White, 1995) and consequently does
not serve our purposes due to the lack of design
visibility offered by these approaches. Finally the
development of the method does not include a
formulation of the complete closed-loop system,
and therefore fails to show that the input and
output matrices change when the loop is closed, a
fact which can be important in the design process.

This paper proceeds as follows. Firstly, in Section
2, a closed-loop system description is produced
that forms the basis for assignment algorithms
presented later on. It is noted that all four system
matrices are subject to change when the loop is
closed, and the implications of this are discussed
in Section 3. A pre-condition is introduced in
Section 2 which, if not fulfilled, would prevent
the calculation of the closed-loop system matrices.
The physical meaning of this pre-condition is
discussed in Section 4, along with a necessary and
sufficient condition for its satisfaction.

The pseudo-state feedback algorithm, itself, is
introduced in Section 5, together with necessary
and sufficient conditions for the construction of
a gain matrix. In Section 6, the possibility that
there are more outputs than states is considered,
and the algorithm of Section 5 is adapted to
account for this. Finally, conclusions may be found
in Section 7.

2. PROBLEM FORMULATION

Consider a semi-proper state-space system under
the influence of feedback such that

ẋ = Ax + Bv (3)

y = Cx + Dv (4)

v = Ky + u (5)

where u is an exogenous input, A ∈ Rn×n, B ∈
Rn×r, C ∈ Rm×n, D ∈ Rm×r and K ∈ Rr×m.

By substitution we may readily obtain

v = (I−KD)−1 u + (I−KD)−1 KCx (6)

under the assumption that the term I − KD is
nonsingular (the implications of this restriction
are discussed later).

To simplify subsequent analysis, we define

N , (I−KD)−1 K (7)

giving, after substitution:

ẋ = (A + BNC)x + B (I−KD)−1 u (8)

y = (C + DNC)x + D (I−KD)−1 u (9)

We may therefore define

Acl , A + BNC (10)

Bcl , B (I−KD)−1 (11)

Ccl , C + DNC (12)

Dcl , D (I−KD)−1 (13)

Note that the closed-loop Acl, Bcl, Ccl, Dcl all
differ from the open-loop A, B, C, D if D 6= 0.
Hence, if the open-loop system is semi-proper, not
only do the system dynamics change when the
loop is closed, but also do the input-state, state-
output and input-output couplings.

3. IMPLICATIONS OF THE CLOSED LOOP
SYSTEM STRUCTURE

In Fletcher’s paper (Fletcher, 1981a), Equation
10 is stated (in expanded form) but it is not
derived. The other three closed-loop matrices are
not presented. However, the effect of loop closure
on B, C and D is important.

Consider the case of right eigenvector assignment
in order to control the coupling of modes into sys-
tem outputs. The closed-loop output matrix Ccl

(Equation 12) depends upon an inverse involving
the gain matrix which, at the time of assignment,
is unknown. Consequently the change from C to
Ccl, when the loop is closed, cannot be predicted.
Therefore, the assignment of eigenvectors to de-
termine mode-output coupling is not appropriate.

Whether or not the change in coupling between
the states and outputs is of concern depends upon
the nature of the assignment taking place. If it is
necessary to ensure a specific coupling of modes
into states, then assignment of eigenvectors is
apporopriate. If, instead, it is desired to control
the appearance of the modes in the outputs, then
techniques leading to the direct assignment of the
output-coupling vectors are required.



A secondary benefit of assigning output coupling
vectors directly is that the algorithm is immedi-
ately suitable for those systems in which the states
themselves have no direct physical interpretation.
Models derived using identification techniques are
likely to fall into this category if the identification
process can only approximate input-output rela-
tionships.

4. SINGULARITIES IN THE CLOSED LOOP
SYSTEM

Section 2 introduced the pre-condition on the gain
matrix that I−KD must be nonsingular. Here, we
consider the reasons for this, and its implications
for control system design.

The constraint is not a curiosity of the exposition
presented here. Rather, it represents a system sin-
gularity. The feedforward Dcl matrix and the feed-
back K matrix form direct forward and backward
transmission paths, coupling the input and output
through a pair of simultaneous equations. When
the constraint is not satisfied, no instantaneous
solution exists to these equations for y given u and
x. It is reasonable to assume that a control system
design approach based on meeting performance
goals would never give rise to such a situation.
Nevertheless, ensuring that this is the case is a
simple matter.

Consider rearranging the defined structure of N,
given in Equation 7:

N = (I−KD)−1 K (14)

N−KDN = K (15)

N = K + KDN (16)

N (I + DN)−1 = K (17)

Note the bijective transformation between N and
K. This implies that if I − KD is nonsingular,
then the term I + DN must also be nonsingular.
The term I + DN, implied in Equation 12, is a
factor that links the open-loop C and closed-loop
Ccl matrices. Consequently, for this term to be
nonsingular, Ccl must be of lower rank than C.

If the design is specified using only output modal-
coupling vectors (for example, using the technique
to be presented in Section 5), it is clear that
assigning a linearly independent set of coupling
vectors is sufficient to ensure that the outputs are
not co-linear and, hence, that Ccl is not rank-
deficient.

5. PSEUDO-STATE FEEDBACK

We now present a novel algorithm that forms
a simple extension to standard state-feedback

EA. It appears elsewhere in a simplified, less
generic form (Pomfret and Clarke, 2003). The
term ‘pseudo-state feedback’ is coined here to
describe the application of output feedback to
a controllable, observable system with the same
number of independent outputs as states. It is not
a misnomer, since state feedback implies that the
states are measurable directly (ie. that C = I and
D = 0). Pseudo-state feedback simply requires
that rank (C) = m = n and otherwise carries
no constraints beyond those of output feedback.
The condition, rank (C) = m = n, allows for the
placement of all the system poles by assigning only
right-eigenvectors. This is the common character-
istic of all state-feedback EA algorithms. There-
fore, the term ‘pseudo-state feedback’ is deemed
appropriate here.

By definition, for any closed-loop eigenvalue-
eigenvector pair {vi, λi},

Aclvi = viλi (18)

and consequently

(A + BNC)vi = viλi (19)

(A− λiI)vi = BNCvi (20)
[
A− λiI

... B
] [

vi

NCvi

]
= 0 (21)

Equation 21 may be parameterised by setting

[
vi

NCvi

]
=

[
Pi

Qi

]
· fi (22)

where

range
([

Pi

Qi

])
= ker

([
A− λiI

... B
])

(23)

The output-coupling vector oi describes the dis-
tribution of a given mode into the outputs:

oi = Cclvi (24)

= (C + DNC)vi (25)

=
[
C

... D
] [

vi

NCvi

]
(26)

oi =
[
C

... D
] [

Pi

Qi

]
· fi (27)

Consequently, the design vector, fi, for a given
mode may used to select either an output-coupling
vector oi, or an eigenvector vi using, for example,
a least-squares projection of a desired vector into
the allowable subspace. Note that, since Ccl is
square and full-rank (see Section 4), the condition
that the closed-loop eigenvectors must be linearly
independent can be satisfied by ensuring instead
that the selected output-coupling vectors are lin-
early independent.



Having selected the design vectors {fi}, the matrix
N may be recovered:

V =
[
v1 v2 . . . vn

]
(28)

=
[
P1f1 P2f2 . . . Pnfn

]
(29)

S = NCV (30)

=
[
Q1f1 Q2f2 . . . Qnfn

]
(31)

N = SV−1C−1 (32)

It only remains to rearrange N (defined at Equa-
tion 7) to find K (using Equation 17). In Section
4, it was shown that a solution is guaranteed
for a linearly independent set of output-coupling
vectors. Consequently, assigning a linearly inde-
pendent set of output vectors guarantees both a
solution to Equation 32 and a solution to Equa-
tion 7.

6. EXCESS FREEDOM

If accelerometers, or other forms of derivative
feedback, are used in order to increase the number
of system outputs to the point where pseudo-state
feedback is practical, it is also feasible that the
number of outputs may be made to exceed the
number of states, ie. m > n. In this case, the gain
matrix solution is not unique.

If the condition that m = n is replaced by the new
condition m ≥ n, the procedure of Section 5 may
be followed until Equation 31. At this point, the
algorithm relies on the inversion of C and must
therefore be modified.

From Equations 29 and 31, it is clear that

NC = SV−1 (33)

where C, S and V are known.

From Equation 17,

N (I + DN)−1 = K (34)

NC = K (I + DN)C (35)

Substituting Equation 33 gives

SV−1 = K (I + DN)C (36)

and solving for K (Ben-Israel and Greville, 1974,
39)

K (I + DN) = SV−1C
†
+ Y

(
I−CC†

)
(37)

K = SV−1C
†
(I + DN)−1

+ Y
(
I−CC†

)
(I + DN)−1 (38)

where C† is the Moore-Penrose pseudo-inverse of
C and Y is a matrix of free parameters. This
parameter matrix is expressed in a similar way to
the matrix of free parameters existing at the end
of the output-feedback EA algorithm of Clarke et
al. (2003). Hence, for a system with m > n, it
is possible, not only to assign n eigenvalues and
right-eigenvectors, but also to recover the unused
design freedom and employ it for another purpose.

7. CONCLUSIONS

A novel state-feedback eigenstructure assignment
algorithm has been presented which is capable
of operating upon semi-proper systems. Attention
has been paid to the changes in mode-output cou-
plings that occur when the loop is closed around
a semi-proper system. A simple output-coupling
vector assignment technique has been developed
to overcome these changes. Straightforward neces-
sary and sufficient conditions have been developed
for the construction of a gain matrix. Finally,
the algorithm has been modified to allow for the
situation where there are more outputs than states
and to encapsulate the excess design freedom in a
usable form.
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