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1. INTRODUCTION

In this paper we consider the following problem:
Let

J :=
(
1 0
0 −1

)
(1)

and let B be a controllable behavior. Let Bdes be
a stable, autonomous subspace of B representing
the desired behavior after feedback interconnection
with some controller C.

Does there exist a J-dissipative controller C such
that C ∩B = Bdes?

Assuming such a controller exists, how many un-
stable poles does the transfer function associated
with the controllable part of C have?

We show that the solvability of this problem
is closely related to the solvability of a metric
interpolation problem associated with Bdes and

the signature matrix J . Consequently, the issue
whether a stable, J-dissipative controller exists
can be addressed by checking the sign-definiteness
of a certain Pick-type matrix associated with
J and with Bdes. The problem we consider in
this paper brings together the theory of control-
as-interconnection developed in (Willems, 1997),
the characterization of stabilizing controllers de-
veloped in (Kuijper, 1995), and the theory of
metric interpolation as exact modeling developed
in (Rapisarda and Willems, 1997), (Kaneko and
Rapisarda, 2003).

The papers (Kimura, 1984), (Kimura, 1989) and
(Tannenbaum, 1980) introduced metric interpola-
tion methods in the study of H∞ control prob-
lems, and the paper (Cevik and Schumacher,
1997) took a metric interpolation approach to the
regulation problem. This paper is much in the
same spirit, and takes advantage of the polyno-



mial framework developed in the behavioral ap-
proach. An essential role in the description of
the problem and its solution is played by the
notion of quadratic differential forms (QDFs),
i.e. quadratic functionals of a system variables
and their derivatives, introduced in (Willems and
Trentelman, 1998).

In this paper we assume that the reader is famil-
iar with the basics of the behavioral approach,
with the framework for exact modeling, and with
quadratic differential forms. The interested reader
is referred to (Polderman and Willems, 1997),
(Willems, 1986), and (Willems and Trentelman,
1998).

Notation. In this paper we denote the sets of real
numbers with R, and the set of complex numbers
with C. Let C+ (C−) denote the open right-
half (left-half, respectively) plane. The space of n
dimensional real vectors is denoted by Rn, and the
space of m×n real matrices, by Rm×n. If A ∈ Rm×n,
then AT ∈ Rn×m denotes its transpose. Whenever
one of the two dimensions is not specified, a bullet
• is used; so that for example, C•×n denotes
the set of complex matrices with n columns and
an unspecified number of rows. If Ai ∈ R•×•,
i = 1, . . . , r have the same number of columns,
col(Ai)i=1,... ,r denotes the matrix


A1

...
Ar




The ring of polynomials with real coefficients
in the indeterminate ξ is denoted by R[ξ]. The
space of all n × m polynomial matrices in the
indeterminate ξ is denoted by Rn×m[ξ]. Given a
matrix R ∈ Rn×m[ξ], we define R∗(ξ) := RT (−ξ) ∈
Rm×n[ξ]. If R(ξ) has complex coefficients, then
R∗(ξ) denotes the matrix obtained from R by
substituting −ξ in place of ξ, transposing, and
conjugating.

We denote with C∞(R,Rq) the set of infinitely
often differentiable functions from R to Rq.

2. CONTROL AS INTERCONNECTION

In many control applications, the classic point of
view of the controller as a signal processor accept-
ing the plant output and deriving control inputs
based on such outputs is unsuitable. Situations of
this sort occur for example in many mechanical
control systems, such as car dampers or opera-
tional amplifiers (see (Willems, 1997)), where the
point of view of control as interconnection, and
of the controller imposing new additional laws on
the plant variables, is better suited. We introduce
this idea first in the case in which all the external

variables w of a plant are available for intercon-
nection.

The interconnection of Σ1 = (R,Rw,B1) and
Σ2 = (R,Rw,B2) is denoted by Σ1 ∧ Σ2 and
defined as

Σ1 ∧ Σ2 := (R,Rw,B1 ∩ B2).

An interconnection is called a feedback intercon-
nection if p(Σ1 ∧ Σ2) = p(Σ1) + p(Σ2), where
p(Σ) is the number of outputs of the system
(see (Polderman and Willems, 1997)). A feedback
interconnection of two systems with w external
variables is called autonomous if p(Σ1 ∧ Σ2) = w;
in such case the behavior B1 ∩ B2 is a finite-
dimensional subspace, and consequently can be
represented in kernel form by a square, nonsingu-
lar polynomial matrix. A feedback interconnection
is called asymptotically stable if it is autonomous
and all the trajectories of B1∩B2 tend to zero as
t→ ∞.

Often, not all the external variables are available
for interconnection, and the controller imposes
new additional constraints on only a subset of the
variables of the plant, the interconnection vari-
ables c. For the purposes of this paper, we can
restrict ourselves to the case of a controllable plant
represented in image form, in which all the latent
variables  are available for interconnection, i.e.
c = . Consider a controllable behavior B repre-
sented in observable image form by a polynomial
matrix M ∈ Rw×l[ξ], i.e.

B := {w ∈ C∞(R,Rw) | ∃  ∈ C∞(R,Rl)

such that w =M(
d

dt
)}.

In many applications, and most notably in LQ-
control, a certain desired subbehavior Bdes is
specified, which must be obtained from the plant
B by restricting the latent variable  to satisfy
certain differential equations. Formally,

w=M(
d

dt
)

0 =D(
d

dt
) (2)

and

Bdes = {w ∈ C∞(R,Rw) | ∃  ∈ C∞(R,Rl)

such that (2) are satisfied}. (3)

It is easy to see that Bdes is finite-dimensional if
and only if the matrix D ∈ R

•×l[ξ] in (2) has full
column rank l, in which case it can be assumed
without loss of generality that D is a nonsingular
polynomial matrix.

In Lemma 3.2 p. 623 of (Kuijper, 1995) a
parametrization of all controllers C that give rise



to the behavior Bdes when interconnected with B
is given.

Theorem 1. Let B be a controllable behavior,
and let R ∈ Rp×w[ξ] and M ∈ Rw×m[ξ] induce
a minimal kernel, respectively observable image,
representation of B. Define Bdes as in (3). Let
B′ ∈ Lw be represented in kernel form by C ∈
Rm×w[ξ] such that col(R, C) is nonsingular, and
define Bcl := B ∩ B′ = ker(col(R( d

dt
), C( d

dt
))).

Then Bdes = Bcl if and only if there exists a
unimodular matrix U ∈ Rm×m[ξ] such that

C ·M = U ·D

The necessary and sufficient condition of Theo-
rem 1 will be instrumental in deriving necessary
and sufficient conditions for a J-dissipative, stable
controller to exist. In order to state such condi-
tions, we need first to illustrate the basic features
of metric interpolation problems.

3. THE TAKAGI INTERPOLATION
PROBLEM

We now introduce the Takagi interpolation prob-
lem (see (Takagi, 1924)); in order to do this,
we will expand on the results of (Rapisarda and
Willems, 1997), where the subspace Nevanlinna
interpolation problem has been solved using the
concept of most powerful unfalsified model intro-
duced in (Willems, 1986).

Let wi : R → Cw, i = 1, . . . , N , be given functions;
for the purposes of this paper, we assume that
wi ∈ C∞(R,Cw) for all i. Let M ⊆ 2(Cw)R

be a
class of models, the choice of which reflects the
assumptions that the modeler wishes to make on
the structure of the phenomenon that produced
the wi’s. In this paper, we choose M = Lw ⊆
2C∞(R,Cw), the class of linear differential behaviors,
i.e. those that are the kernel of a polynomial
differential operator with constant coefficients.

B ∈ M is an unfalsified model for the data
set {wi}i=1,... ,N if wi ∈ B for i = 1, . . . , N .
We call B∗ the Most Powerful Unfalsified Model
(MPUM ) in M for the given data set, if it is
unfalsified and moreover

[wi ∈ B′, i = 1, . . . , N, B′ ∈ M] =⇒ [B∗ ⊆ B′]

i.e. if it is the smallest behavior in M containing
the data. For the case of the model class Lw it can
be shown that the MPUM always exists and that
it is unique (see (Willems, 1986)).

We proceed to state the version of the Takagi
interpolation problem (TIP) which will be used
in the rest of this paper. Let N distinct points
λi in the open right-half plane be given, together

with N values bi ∈ C, and let J be given as in (1).
The TIP consists of finding the smallest k ∈ N

and polynomials u, y ∈ R[ξ] such that

(a) u, y are coprime;
(b) y has k roots in C+;

(c)
[
u(λi) −y(λi)

] [
1
bi

]
= 0, 1 ≤ i ≤ N ;

(d) ‖u
y ‖∞ < 1

Following (Rapisarda and Willems, 1997), we
show that this problem can be cast in the frame-
work of exact modeling developed in (Willems,
1986) as follows. We define

vi :=
[
1
bi

]
,

and associate to the data {(λi, vi)}i=1,... ,N the set
of vector-exponential trajectories vi expλi

; then it
is easy to see that requirement (c) in the definition
of solution to the SNIP is equivalent with

vi expλi
⊆ ker

[
u(
d

dt
) −y( d

dt
)
]
, i = 1, . . . , N

The metric- and stability aspects of the solution
to the SNIP (see requirements (d) and (b) above)
can be accommodated in the MPUM framework,
provided one constructs a special kernel represen-
tation for the MPUM associated to the “dualized
data”, which we now introduce.

Given the interpolation data {(λi, vi)}i=1,... ,N , we
consider the “mirror image” (see also (Antoulas
and Anderson, 1989)) of vi, defined as

v⊥i :=
[
b̄i
1

]

and we define the dual of vi expλi
to be

v⊥i exp−λ̄i

We also define the dualized data D as

D := ∪i=1,... ,N{vi expλi
, v⊥i exp−λ̄i

} (4)

Now consider the following procedure for the
construction of a kernel representation of the
MPUM for the data {(λi, vi)}1≤i≤N .

Algorithm
Input: {(λi, vi)}i=1,... ,N

Output: Kernel representation of MPUM for D

Define R0 := I2;
For i = 1, . . . , N
εi := Ri−1(λi)vi;
Ri(ξ) :=

[
(ξ + λ̄i)I2 − εi(

ε∗i Jεi

λi+λ̄i
)−1ε∗i J

]
Ri−1(ξ);

end;

Proof of the correctness of this algorithm can be
found in (Rapisarda and Willems, 1997).



We now relate the properties of the representation
of the MPUM for the dualized data D to those
of the Pick matrix of the data.

Theorem 2. Assume that the Hermitian matrix
TN :=

[
1−b̄ibj

λ̄i+λj

]
i,j=1,... ,N

(Pick matrix) is invert-

ible. Then the following statements are equivalent:

(1) The Hermitian matrix TN :=
[

1−b̄ibj

λ̄i+λj

]
i,j=1,... ,N

has k negative eigenvalues;
(2) The algorithm above produces a kernel repre-

sentation of the MPUM for the dualized data
set D defined in (4) induced by a matrix of
the form

R :=
[−d∗ n∗

n −d
]

(5)

where n, d ∈ R[ξ] satisfy the following prop-
erties:
(a) d �= 0;
(b) d has k roots in C+;
(c) RJR∗ = R∗JR = pp∗J
with p(ξ) = ΠN

i=1(ξ + λ̄i);
(d) ‖n

d ‖∞ < 1;
(e) ‖n∗

d ‖∞ < 1.

Proof. The proof of this Theorem follows an anal-
ogous line to that of the main result of (Rapisarda
and Willems, 1997).

The special kernel representation of the MPUM
for D described in Theorem 2 allows us to char-
acterize the solutions of the TIP as follows.

Theorem 3. Assume that the Hermitian matrix
TN :=

[
1−b̄ibj

λ̄i+λj

]
i,j=1,... ,N

is invertible and has k

negative eigenvalues, and let (5) be the represen-
tation of the MPUM for D computed with the
algorithm above.

Then
[
u −y ]

is a solution to the TIP with y
having k roots in C+ if and only if there exist
π, φ, f ∈ R[ξ], with φ, f Hurwitz, and ‖π

φ‖∞ < 1,
such that

f
[
u −y ]

=
[
π −φ ] [ −d∗ n∗

n −d
]

(6)

Proof. The proof of this Theorem is analogous
to that of the main result of (Rapisarda and
Willems, 1997).

4. MAIN RESULT

Recall from section 2 that a behavior C ∈ L2

with a minimal kernel representation induced by
C ∈ R2×1[ξ] yields a desired behavior Bdes ∈ L2

defined as in (3) and represented as in (2) when

interconnected with the behavior B = {w ∈
C∞(R,R2) | w =M( d

dt)} if and only if

C ·M = α · d (7)

with α ∈ R, α �= 0. The following Proposition is
instrumental in deriving the main result of this
paper.

Proposition 4. Let B = {w ∈ C∞(R,R2 | w =
M( d

dt
)} ∈ Lw, and let Bdes defined as in (3) and

represented as in (2). Assume that D ∈ R[ξ] in (2)
has only simple roots. Let C ∈ L2 be represented
in minimal kernel form by a matrix C ∈ R1×2[ξ].
Then the following two statements are equivalent:

(1) C is a controller yielding Bdes when intercon-
nected with B;

(2) kerC( d
dt ) ∩ imM( d

dt )
= span{M(λi) | λi such that d(λi) = 0}.

Proof. Follows from Theorem 1.

The result of Proposition 4 connects the problem
of unfalsified modeling of vector exponential time
series, with the problem of computing a controller
which, when interconnected with a given plant,
yields a desired autonomous behavior. Indeed,
observe that the kernel representation induced by
C in statement 2 of Proposition 4 is an interpolant
for the data {M (λi) | λi is such that d(λi) = 0}
with the additional property (2) in Proposition 4.
The following equivalent conditions follow easily
from this observation, and from restating the
conditions of Theorem 2 for the case of λi ∈ C−,
1 ≤ i ≤ N .

Corollary 5. Let B = {w ∈ C∞(R,R2) | w =
M( d

dt
)} ∈ Lw, and let Bdes defined as in (3)

and represented as in (2). Assume that D in (2)
has only simple roots λi, i = 1, . . . , N . Then the
following two statements are equivalent:

(1) There exists a J dissipative controller yield-
ing Bdes when interconnected with B and
whose transfer function has k unstable poles;

(2) There exists a J dissipative behavior C with
a transfer function having k unstable poles,
such that

C ∩ B = Bdes

(3) There exists a solution
[
u −y ]

to the TIP
with data {(λi,M(λi))}, such that

ker
[
u(
d

dt
) −y( d

dt
)
]
∩ B = Bdes

and y has k roots in C+;
(4) There exists a behavior C with controllable

part Ccontr such that
(a) C ⊃ lin span D, with D the dualized data
set (4);

(b) Ccontr is dissipative;



(c) Ccontr ∩ B = Bdes;
(d) The transfer function associated with

Ccontr has k poles in C+.

The following necessary condition for the solvabil-
ity of the stabilization with dissipative controller
problem derives easily from Corollary 5.

Corollary 6. Assume that D ∈ R[ξ] in (2) is
Hurwitz and has only simple roots. If the plant
represented in observable image form byM can be
interconnected with a dissipative controller having
a transfer function with k unstable poles in order
to achieve Bdes described in (3), then the Pick
matrix associated to the closed-loop behavior :[

M(λi)∗JM(λj)
λ̄i + λj

]
i,j=1,... ,N

(8)

must have k negative eigenvalues.

We now proceed to establish another equivalent
condition for the solvability of the stabilization
problem with a dissipative controller.

We consider plants represented in observable im-
age form by a polynomial vector

M =
[
p
q

]
(9)

with p, q ∈ R[ξ], GCD(p, q) = 1, deg(p) ≥ deg(q).
Note that the latter assumption implies that the
variables w are partitioned as col(u, y) with y an
input variable and u an output variable.

Assume that the Pick matrix of the data is non-
singular. It follows then from the fact that (5) is
a representation for the MPUM for D, that there
exist ei ∈ R[ξ], i = 1, 2 such that[

d(−ξ) −n(−ξ)
n(ξ) −d(ξ)

]
M(ξ) =

[
e1(ξ)
e2(ξ)

]
D(ξ) (10)

Consequently, col(e1, e2)D represents how the
model represented by (5) fails to explain the tra-
jectories M(λ) expλ, λ �= λi, i = 1, . . . , N . For
this reason, we call [

e1
e2

]

an image representation of the error system of the
MPUM (5) on imM( d

dt ), defined as

E := im


 e1(

d

dt
)

e2(
d

dt
)


 (11)

Observe that the error system depends on the
particular representation (5) of the MPUM.

We now state one additional equivalent condition
for the solvability of the stabilization problem
with dissipative controller.

Theorem 7. Let B = {w ∈ C∞(R,R2) | w =
M( d

dt )} ∈ L2, and let Bdes defined as in (3) and
represented as in (2). Assume that D ∈ R[ξ] has
only simple roots. Then the following statements
are equivalent:

(1) There exists a J dissipative controller yield-
ing Bdes when interconnected with B, and
whose controllable behavior has a transfer
function with k poles in C+;

(2) There exists a representation of the MPUM
for D such that d has k roots in C+. Let
the associated error system be represented
by (11). Then there exist π, φ ∈ R[ξ] with φ
Hurwitz and ‖π

φ
‖∞ < 1, and α ∈ R such that

[
π −φ ] [

d∗ n∗

n −d
]
= α(πe1 − φe2)

[
u −y ]

and GCD(u, y) = 1.

Proof. The result can be proved using the char-
acterization of all interpolants given in Theorem
3.

5. EXAMPLE

Consider the plant represented in image form by

M(ξ) =

[ 2
3
+
ξ

6
1

]

Let Bdes = span {M (−1) exp−1,M(−2) exp−2};
is it possible to obtain such closed-loop behavior
connectingM to a stable, J-dissipative controller?

Using the necessary condition of Corollary 6, we
first check the sign of the Pick matrix associated
with the data {M (−1) exp−1,M(−2) exp−2}. It
can be verified that this matrix


3
8

5
18

5
18

2
9




is positive definite. We conclude that there exists
a representation (5) of the MPUM for the dualized
set of data, with d stable. It can be verified that
one such representation is


17
4

− 15
4
ξ + ξ2

3
4
ξ − 15

4
−3
4
ξ − 15

4
17
4

+
15
4
ξ + ξ2


 (12)

An image representation of the error system cor-
responding to (12) is


1
24

(−11 + 4ξ)
7
8




Define C := ker
[
−3
4
d

dt
− 15

4
17
4

+
15
4
d

dt
+
d2

dt2

]
,

the behavior represented by the second row of



the MPUM representation (12). Observe that the
transfer function associated with C is stable; more-
over, it can be proved that its infinity norm equals
0.8824.

Now since[
−3
4
ξ − 15

4
17
4

+
15
4
ξ + ξ2

]
M(ξ) =

7
8
(ξ + 1)(ξ + 2)

the closed-loop behavior B ∩ C, represented by
 −1 2

3
+
ξ

6
−3
4
ξ − 15

4
17
4

+
15
4
ξ + ξ2




is exactly equal to Bdes. It can be verified easily
that the characterization given by Theorem 7
holds true in this case, with α = 8

7 .

6. CONCLUSIONS AND FURTHER WORK

The main theme of this paper is the connections
existing between stabilization, metric interpola-
tion, and exact identification. The research pre-
sented in this paper is being extended in several
directions, most notably the following ones.

The multivariable case The multivariable case
(w > 2) presents no conceptual difficulty, al-
though the technical difficulties involved in the
extension of our results are not negligible. Re-
search in this direction is already under way.

Efficient algorithms In view of the extension of
the results presented in this communication to
the multivariable case, it is especially important
to develop efficient algorithms that take as
inputs the polynomial matrix representations of
the plant and of the error system, and compute
a kernel representation of the controller. The
result of Theorem 7 can be considered as a first
step in this direction.

State-space formulas The state-space case is
a special case of the results presented in this
paper; however, deriving explicit state-space
formulas is a task deserving interest in its own
right; in this respect, see also (Gohberg and
Olshevsky, 1994).

Generalizations The most pressing generaliza-
tion of the results presented in this paper is a
discussion of the problem of stabilizability, in
which the closed-loop behavior Bdes is not ex-
plicitly given, but is required only to be stable.
In such case, the question whether the plant is
stabilizable at all should find adequate treat-
ment in the framework proposed in this paper.
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