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Abstract: Recent algorithm developments in the field of output-feedback eigen-
structure assignment make use of the available design freedom in a multi-stage
assignment process. Depending on the number of degrees of freedom available and
the manner in which they are distributed between the stages, it is possible that not
all will be used. This paper develops an algorithm by which these excess degrees
of freedom may be put to use by nulling individual elements of the gain matrix,
thereby imposing structure upon the resulting controller. Consideration is given
to the effect of this process on the remaining gain matrix elements.
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1. INTRODUCTION

The recent work of Clarke et al. (2003) detailed
new algorithms for output-feedback eigenstruc-
ture assignment control for linear systems. The al-
gorithms employ a multi-stage approach, in which
the available design freedom is reduced stepwise
by the assignment of eigenvectors and associated
eigenvalues. Depending on the number of degrees
of freedom available and the manner in which they
are distributed between the design stages, it is
possible that some may remain unused after the
assignment is complete. In other published work,
Clarke and Griffin (2004) introduce an algorithm
(the ‘retro-assignment stage’) that makes use of
this post-assignment freedom to assign comple-
mentary eigenvectors to those assigned using the
original algorithm.
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It is likely, however, that further eigenvector as-
signment is not the most appropriate use for
this design freedom. Typically, only a few right
eigenvectors (corresponding to dominant modes)
are crucial to the system specification, but the
formation of the general nonlinear eigenstructure
assignment problem into a problem with a linear
solution requires that one eigenvector is assigned
for every eigenvalue. The control of modal cou-
pling is therefore likely to have been satisfied by
the primary assignment algorithm and the design
freedom could, instead, be employed to achieve
some other objective.

One such objective is a defined controller struc-
ture. Eigenstructure assignment, in common with
most multi-input multi-output control system de-
sign techniques, will, in general, generate a fully-
populated matrix of feedback gains. The result-
ing complex, fully-interconnected controller bears
little resemblance to the sparse, modular control
systems achieved using classical approaches. In



order to impose structure upon a controller, it
is necessary to reduce a subset of the gains to
zero, thereby reducing the complexity of the con-
nections from plant outputs to plant inputs. This
paper presents a method by which design freedom,
remaining after eigenstructure assignment is com-
pleted, may be used for this purpose.

Section 2 defines the Kronecker product and vec
operator, both of which are at the heart of the
development of the problem in Section 3. A solu-
tion is then derived in Section 5. Nulling individ-
ual gain matrix entries must affect the remaining
entries. The nature and magnitude of this effect
is investigated in Section 6. Conclusions are pre-
sented in Section 7.

2. DEFINITIONS

The following definitions will be employed through-
out this paper.

Kronecker Product: The Kronecker product
(direct product, tensor product) of Am×n =
[aij ] and Br×s = [bij ] is defined as the parti-
tioned matrix

A⊗B =




a11B a12B · · · a1nB
a21B a22B · · · a2nB

...
...

...
am1B am2B · · · amnB


 (1)

which can be seen to be of order (mr × ns).

Vec Operator: The vec operator converts a ma-
trix of order (m× n) into a vector of length mn
and is defined as

vecA =




A·1
A·2
...

A·n


 (2)

3. PROBLEM DEFINITION

The algorithms described in Clarke et al. (2003)
yield a gain matrix K which is dependant upon a
matrix of free parameters Z. The matrix Z may
be chosen arbitrarily, and any changes exhibited
by the gain matrix K as a result will not affect the
eigenvalues or assigned eigenvectors of the closed
loop system. The gain matrix equation takes the
following form:

K = K0 +
(
I−X†X

)
Z

(
I−YY†) (3)

where X ∈ Cw×r, Y ∈ Cm×v, and K, K0, Z ∈
Rr×m. A† is the Moore-Penrose inverse of A and
satisfies the following four equations:

AA†A = A (4)

A†AA† = A† (5)(
AA†)? = AA† (6)

(
A†A

)? = A†A (7)

where A? represents the complex conjugate trans-
pose of A.

The mapping of Z to K through Equation 3 is
not bijective, so a multiplicity of values for Z can
yield the same K. Clarke and Griffin (2004) show
that the number of degrees of freedom available
at this stage is given by

f = (m− v) (r − w) (8)

and that, if f = 0, the term involving Z in
Equation 3 will evaluate to zero.

In order to reduce an arbitrary set of gain matrix
entries to zero, it is necessary to find a solution to
the equation

UvecK = 0 (9)

where the permutation matrix Uδ×mr posesses
exactly one unity element per row and is zero
elsewhere. The parameter δ is therefore equal to
the number of gain matrix elements that are to be
nulled. Substituting Equation 3,

Uvec
(
K0 +

(
I−X†X

)
Z

(
I−YY†)) = 0 (10)

Uvec
((

I−X†X
)
Z

(
I−YY†)) = −UvecK0

(11)

The identity (Graham, 1981, p25)

vec (ABC) =
(
CT ⊗A

)
vecB (12)

can now be applied, yielding

U
((

I−YY†)⊗ (
I−X†X

))
vecZ = −UvecK0

(13)

Note the lack of a transpose operator since the
matrices forming the Kronecker product are sym-
metric. We may now define

Ξ ,
(
I−YY†)⊗ (

I−X†X
)

(14)

so that
UΞvecZ = −UvecK0 (15)

Section 5 will concentrate upon finding a solution
to Equation 15. But, beforehand, we must con-
sider essential properties of Ξ.

4. PROPERTIES OF Ξ

The term Ξ, defined in Equation 14, has two
properties that will assist in the analysis presented
below.

Firstly, Ξ is idempotent. The idempotence of its
component terms is easily shown, and the product



of two Kronecker products (Graham, 1981, p24)
is given by

(A⊗B)(C⊗D) = AC⊗BD (16)

provided that the dimensions are such that the
various matrices exist. Consequently, if both E
and F below are idempotent, then

(E⊗ F)2 = E2 ⊗ F2

= E⊗ F (17)

and, therefore, Ξ is idempotent.

Secondly, Ξ is symmetric. From Equations 6 and
7, the expressions X†X and YY† can be seen to be
symmetric and consequently so are

(
I−X†X

)
and(

I−YY†). The transpose of a Kronecker product
is given by Graham (1981, p24) as

(A⊗B)? = A? ⊗B? (18)

and so it is clear that the term Ξ is symmetric.

5. SOLUTION FOR Z AND K

We now consider the solution for Equation 15,
which is of the form

Ax = b (19)

and therefore (Ben-Israel and Greville, 1974, p40)
has a solution if and only if

AA†b = b (20)

The solution is therefore given by

x = A†b +
(
I−A†A

)
y (21)

Consequently, a solution to Equation 15 exists if
and only if

UΞ (UΞ)†UvecK0 = UvecK0 (22)

A matrix E is idempotent if E2 = E; the term
UΞ (UΞ)† is idempotent (via Equations 4 and 5),
and it holds for an idempotent matrix E (Ben-
Israel and Greville, 1974, p49) that

Ex = x (23)

if and only if
x ∈ range (E) (24)

Therefore a solution exists for Equation 15 if and
only if

UvecK0 ∈ range
(
UΞ (UΞ)†

)
(25)

∈ range (UΞ) (26)

A simple sufficient condition is easily seen to be

rank (UΞ) = δ (27)

This condition, although not strictly necessary, is
necessary for general K0 and Ξ since, otherwise,
there is no guarantee of the existence of a U which
satisfies Equation 26.

A necessary (but not sufficient) condition for the
fulfillment of Equation 27 is that

δ ≤ rank (Ξ) (28)

≤ rank
((

I−YY†)⊗ (
I−X†X

))
(29)

≤ rank
(
I−YY†) · rank

(
I−X†X

)
(30)

≤ (
m− rank

(
YY†))(r − rank

(
X†X

))
(31)

≤ (m− v)(r − w) (32)

Comparison with Equation 8 shows that Equation
32 may be written as

δ ≤ f (33)

This demonstrates that, for general K0 and Ξ,
the number of gain matrix entries to be reduced
to zero may not exceed the number of available
degrees of freedom. Note that the satisfaction of
Equation 33 is not sufficient for the existence of a
solution to Equation 15, and that the satisfaction
of Equation 26 is still required.

Assuming, then, that U has been selected to meet
Equation 26, the solution to Equation 15 is given
by substitution into Equation 21:

vecZ =− (UΞ)†UvecK0

+
(
I− (UΞ)†UΞ

)
vecZ̃ (34)

where Z̃ is a matrix characterising any remaining
free parameters. A solution for K may now be
found. From Equation 3,

K = K0 +
(
I−X†X

)
Z

(
I−YY†) (35)

vecK = vecK0 + ΞvecZ (36)

Substituting Equation 34, we may obtain

vecK = vecK0 − Ξ (UΞ)†UvecK0

+ Ξ
(
I− (UΞ)†UΞ

)
vecZ̃ (37)

= vecK0 − Ξ (UΞ)†UvecK0

+ ΞvecZ̃− Ξ (UΞ)†UΞvecZ̃ (38)

Equation 38 may be simplified by noting (from
Equations 5 and 7) that



A† = A†AA† (39)

=
(
A†A

)?
A† (40)

= A?
(
A†)?

A† (41)

and therefore that

A† ∈ range (A?) (42)

It may therefore be seen that

(UΞ)† ∈ range (Ξ?U?) (43)

∈ range (Ξ) (44)

and therefore that

Ξ (UΞ)† = (UΞ)† (45)

since Ξ is idempotent.

So, using Equation 45, Equation 38 becomes

vecK = vecK0 − (UΞ)†UvecK0

+ ΞvecZ̃− (UΞ)†UΞvecZ̃ (46)

=
(
I− (UΞ)†U

)(
vecK0 + ΞvecZ̃

)
(47)

It must be noted that it is not possible to recover
a matrix formulation for K since the vec operator
has no effective inverse. The gain matrix must
instead be derived in vector form as above, and re-
constituted numerically into a matrix afterwards.

6. SENSITIVITY OF THE GAIN MATRIX

There exists a value of Z for which |K|F is min-
imal.(The Frobenius matrix norm is the square
root of the sum of squared gain matrix entries.)
It is safe to assume that the value of Z found via
Equation 47 will not equal this ‘optimal’ value.
Therefore, nulling individual gain matrix entries
will, in general, raise |K|F .

The extent to which |K|F is affected will depend
upon the elements of the gain matrix selected
by the permutation matrix U. A mechanism for
determining the increase in |K|F would be a
useful tool when attempting to determine which
elements should be set to zero.

Since the formulation for K in Equation 47 con-
tains a free parameter matrix, it is important to
find the value of the free parameter matrix that
minimises the Frobenius norm of the final gain
matrix.

6.1 Minimum Frobenius Norm

From earlier examination of the properties of Ξ,
we may now determine the value of Z̃ that leads

to the minimum |K|F . Because vecK is simply a
rearrangement of entries,

|K|F = ‖vecK‖ (48)

and therefore

|K|F =
∥∥∥
(
I− (UΞ)†U

)(
vecK0 + ΞvecZ̃

)∥∥∥
(49)

=
∥∥∥

(
I− (UΞ)†U

)
vecK0

+
(
I− (UΞ)†U

)
ΞvecZ̃

∥∥∥ (50)

The problem is now one of solving an equation of
the form

d

dx
‖Ax + y‖= 0 (51)

to find a minimum. It may be shown that

d

dx
‖Ax + y‖=

A′ (Ax + y)
‖Ax + y‖ (52)

and therefore we must solve
d

dZ̃

∥∥∥
(
I− (UΞ)†U

)
vecK0

+
(
I− (UΞ)†U

)
ΞvecZ̃

∥∥∥ = 0
(53)

i.e.

(
Ξ− (UΞ)†UΞ

)′ ((
I− (UΞ)†U

)
vecK0

+
(
I− (UΞ)†U

)
ΞvecZ̃

)
= 0

(54)
so,

(
Ξ− (UΞ)†UΞ

)((
I− (UΞ)†U

)
vecK0

+
(
I− (UΞ)†U

)
ΞvecZ̃

)
= 0

(55)

since A†A and Ξ are both symmetrical.

Equation 55 may be simplified further:

(
Ξ− (UΞ)†UΞ

)(
vecK0 − (UΞ)†UvecK0

+ ΞvecZ̃− (UΞ)†UΞvecZ̃
)

= 0

(56)

so

ΞvecK0 − (UΞ)†UΞvecK0

+ ΞvecZ̃− (UΞ)†UΞvecZ̃ = 0
(57)



hence

(
Ξ− (UΞ)†UΞ

)
vecK0

+
(
Ξ− (UΞ)†UΞ

)
vecZ̃ = 0

(58)

Equation 58 has the simple solution:

ˆ̃Z = −K0 (59)

where ˆ̃Z is the value of Z̃ which minimises |K|F .

6.2 Increase in Minimum Norm

The minimum |K|F may be simply calculated by
substituting Equation 59 into Equation 47:

min |K|F = min ‖vecK‖
=

∥∥∥
(
I− (UΞ)†U

)(
vecK0 + Ξvecˆ̃Z

)∥∥∥
(60)

=
∥∥∥
(
I− (UΞ)†U

)
(I− Ξ) vecK0

∥∥∥
(61)

The minimum |K|F achievable prior to nulling
any gain matrix entries may be found by setting
U = 0.

So,

min |K|F = min ‖vecK‖ = ‖(I− Ξ) vecK0‖ (62)

Comparison of Equations 61 and 62 shows the
effect of nulling a subset of the gains. This infor-
mation can be used to determine which gains may
most easily be reduced to zero whilst maintaining
the lowest possible gains elsewhere.

7. CONCLUSIONS

The design freedom remaining at the end of
multi-stage eigenstructure assignment algorithms
(Clarke et al., 2003) has use beyond the retro-
assignment stage offered by Clarke and Griffin
(2004). Specifically, this freedom may be used
to reduce individual entries in the gain matrix
to zero, thereby imposing a structure upon the
resulting controller.

An algorithm for nulling a subset of gain matrix
entries has been presented, and it has been demon-
strated that the maximum number of entries that
may be nulled is, in general, equal to the num-
ber of available degrees of freedom. In addition,
the effect upon the remaining entries of the gain
matrix has been considered, and an expression

generated for the minimum Frobenius norm of the
gain matrix both before and after the nulling of
entries.
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