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Abstract: The variable structure control system includes a set of controllers that have been 
prepared and tuned in advance. The output of the most suitable controller from this set is 
switched to the activity according to the changes of the static and dynamic properties of 
the controlled system and according to the input disturbances during the operation. Many 
classes of controllers can be included in the hybrid control strategy and it can be applied 
to a fairly general class of controlled systems. Thus, this hybrid controller is characterised 
by considerable flexibility and wide application range. The discrete time incremental 
estimator, convenient for the switching and for the control, is described and tested.  
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1. INTRODUCTION 
 
The structures of the multi input and multi output 
[MIMO] systems are very different. On the one hand, 
there are systems with several dynamic blocks, 
which have single manipulated variable input and the 
outputs  of  the  whole  system  are weighted sums of  
  

     

 
 
Fig. 1. The block structure of the controlled system. 

 

the outputs of the individual blocks. There is no 
interaction between state variables of the different 
blocks. Such a structure can be called a block system 
(Fig.1). On the other hand, there are systems, where 
each state variable of the MIMO system can be 
influenced by another arbitrary state variable from 
the system and vice versa. They can by called global 
systems (Fig.2). 
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Fig. 2. The global structure of the controlled system. 



2. THE BLOCK SYSTEM STRUCTURE 
 
The fourth order linear system in Fig.1 can serve as 
an example of the block structure. The system has 
two control inputs u and two controlled variables y. 
The discrete time description of the system is 
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This description can be manipulated to the form 
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and the transfer function of the system can be written 
as  

 
. 

11

, 
11

242
44

1

1

121
22

1

1

2

232
33

1

1

111
11

1

1

1

ub
az

zub
az

zy

ub
az

zub
az

zy

−

−

−

−

−

−

−

−

−
+

−
=

−
+

−
=

 (3) 

 
 

 
 
Fig. 3. The scheme of the multivariable control 

system for design of the state controller and for 
the comparison of the control results. 

The system description (2) and (3) is suitable for the 
system identification from measurement data. The 
model with the description (2) is in Fig.3. It is 
augmented with a control system with the state 
controller R.  
 
The controller is designed for this model. A discrete 
time integrator is connected to the outputs y1 and y2 
of the model for the controller R to be able to reject 
all of the input disturbances of the controlled system 
with zero steady state error. All of the state variables 
of the system are supposed to be measurable. If this 
is not possible in the practice, the same controller R 
with the same tuning is used in the control scheme 
with the incremental discrete time estimator E in 
Fig.4. All of the coefficients in Fig.4 are the same as 
in Fig.3. 
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 D = 1- z-1,  D-1 =  1/(1 - z-1). 
 
The incremental estimator in Fig.4 (see Hanuš et al.,  
2000, 2001, 2004b) can be tuned for the expected 
disturbances dIN, dOUT and dARX (only the first element 
is in the transfer function numerator) and it is able to 
achieve their best rejection with the prepared 
controller beginning with the first sampling period. 
Other disturbances are rejected optimal after N 
periods (N≤ n, n is the system order). The choice of 
the estimator is carried out by means of the switches 
in the Table 1. 



Table 1 The estimator tuning for different 
disturbances 

 
 disturbance               switch               estimator 
      input                   position                  type 

     

        dIN   1        3 – on        EIN
        dOUT  2        3 – off        EOUT
        dARX  1        3 – off        EARX
 
The size if the dIN input is estimated by means of the 
matrix M. 
 
 
2.1 Illustrative example. 
 
The control schemes in Fig.3 and Fig.4 were tested 
by means of the computer simulation. The transfer 
functions of the continuous controlled system in 
Fig.1 were 
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Fig.5 shows the comparison of the responses of two 
control schemes. First, the response of the control 
scheme where the controlled system SS is continuous 
and the state variables of its discrete time model are 
estimated using a discrete time estimator of the type 
that is shown in Fig.4. Second, the controlled system 
S is discrete and its state vector is directly accessible 
to the state feedback controller. The results are 
demonstrated in Fig.5. The sampling interval is 0.2 s.  
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Fig. 5. Responses with block structure system. 

3. GLOBAL STRUCTURE 
 
An example of a two input two output global 
structure system in Fig.2 of the third order in 
observer canonical form may by described with (1), 
where 
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The relation between the inputs u1 or u2 and the 
output y1 or y2 of the controlled system (1),(5) 
obtained from the identification in the form of 
difference equations is 
 
 ( ) uB122111  kzuBuBAy −=+= , (6) 

 ( ) uB224132  kzuBuBAy −=+= ,  (7) 
 
where    [ ]21111 BBB = , , [ ]22122 BBB =

[ ]jijijiji bbb 321
T =B ,     

( )kz−  - one row matrix with the elements z-k, k =1     
to 3. 

 
The polynomials A on the left side of the equations 
are identical, they correspond to the characteristic 
polynomial of the controlled system (the determinant 
of the matrix (I − z-1A) in (1)). 
 
The solution of the system (1),(5) where the elements 
of the matrix C are unknown yet, is 
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It follows after the comparison with the relation (6) 
and (8) 11  Syy ,

1ε−
 BB 1=  (9) 
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and after the comparison (7) and (8) it follows 
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After arranging the matrix in the relation (10) (the 
polynomials elements multiplied by (10) are 
placed in the k-th row and i-th column of the matrix 
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the same coefficients ci  should be convenient  for the 
arbitrary input of the manipulated variable u1 and  u2 , 
the following equations hold 
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In the end both of the controlled variables y1 and y2   
are included in the state vector of the controlled 
system model using the linear transformation 
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The final form of the state description of the system 
is 
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The structure of the estimator (Fig.4) corresponds to 
the description (15). However it is possible to use 
instead of (15) directly the identification difference 
equations (6) and (7) or the mixed difference 
equations 
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The control results correspond with the results of the 
estimator designed according to the description (15) 
only, if the total orders of the estimators are equal or 
if the real input disturbance corresponds to that (w, 
dOUT  in Fig.7), for which the estimator are tuned. 
 
 
3.1 Illustrative example. 
 
The system of the fourth order with multiple time 
constants T=1s and with the transfer function (16) 
from the control input u1 was chosen for testing 
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The corresponding discrete time state descriptions in 
observer canonical form with two control inputs u1 
and u2 and two controlled variables y1 and y2 is then 
(1), where the first column B1 in the matrix B 
corresponds to the transfer function (16) and the 
second column B2 and the matrix C are chosen. The 

relation c1 = – c3(a31 + a41) was respected by the 
choice. The linear transformation matrix is then 
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The relation for c1 helps the closed system matrix to 
be regular and well conditioned. Otherwise slight 
changes of reference inputs w1 and w2 could result in 
huge changes of manipulated variables u1 and u2. 
This effect is typical of MIMO systems and does not 
exist in SISO systems. 
 
The step responses of the controlled system are in 
Fig.6. The demonstrations of the control processes 
are in Fig.7. The model SS in Fig.4 used for the 
simulation is discrete, the sampling interval is 0.5s. 
 

0 5 10 15 20
-1.5

-1

-0.5

0

0.5

1

[s]  

11 xy =

32 xy =

4x

2x

0  , 1  21 == uu 

0 5 10 15 20
-4

-2

0

2

4

[s]  

11 xy =

32 xy =

4x

2x

1  , 0 21 == uu 

Fig. 6. Step responses of the global structure system. 
 
 

4.  DECOUPLING CONTROL 
 
This feature is often demanded in the practice. It 
doesn’t mean however, that the decoupling control is 
better in the sense of the performance criterion 
(quadratic), for which the control is designed. 
 
The design of the decoupling control is based on the 
description (1) and (2) and on its solution in the form  
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After the reduction in the rows, the following relation 
holds 
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where 
[ ]ii ydet  - the vector (r,1) after the reduction in the 

rows, 



0D  - the matrix D(r,r) after the reduction. 
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Fig. 7. Responses with global structure system. 
 
 
After introducing the decoupling condition, the 
following equation must be satisfied  
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v - the vector (r,1) of the virtual manipulated 

variables, 
0F  - the optional diagonal matrix (r,r). 

 
The values of the real manipulated variables 
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are determined directly in the control system from 
the outputs vi of the SISO discrete time controllers Ri 
of arbitrary type. They are designed for the system  
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The manual operation is possible by means of the 
variable vi or by means of the real manipulated 
variable ui. 
 
 
4.1 Illustrative example. 
 
The responses of the decoupling control system were 
simulated with controlled system (1),(2) and with 
condition (20) satisfied. The elements of the matrix 
F0 are: ( ) 1 33

1
1101 azbF −−= , ( )22

1
4202 1 azbF −−= . 

The decoupling control is simulated by means of the 
discrete model S on the scheme on Fig.3. The 

responses are compared with the result obtained in 
the chapter 2.1. Full decoupling is achieved if the 
control coefficients corresponding with x3 and x4 are 
zero. The demonstrations of the control responses are 
in Fig.8,9,10.  
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Fig. 9. Decoupling control responses with block 
structure system. 
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The speed control of the steam turbine with the 
generator and the pressure control of the extraction 
steam from the turbine is a typical example of 
decoupling control. The system of the second order 
with the block structure is used for the simplified 
description of the controlled system 
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where  
u1 - the flow volume through the high pressure 

turbine part valves, 
u2 - the flow volume through the low pressure 

turbine part valves, 
y1 - the turbine speed, 
y2 - the pressure of the extraction steam. 
 
The relation (21) between the virtual and real 
manipulated variables is (choosing F0 = I) static in 
this case (the number of the controlled variables is 
equal to the total order of the controlled system). It is 
solved  in the practice by means of the rocking  lever, 
which connects the action points of the valves and 
the sensors. The method of the alignment chart 
(nomogram) design is used. Both of the controllers 
are continuous and proportional (Fig.11). 
 

 
Fig. 11. The rocking lever for the decoupling control. 

The distances bij on the figure correspond to the 
coefficients in the system description (23) and to 
the scales of the controlled yi and manipulated ui 
variables on the figure. 

 
 

5. CONCLUSION  
 
The discrete time incremental estimator was tested in 
laboratory in connection with the continuous and 
discrete time controller, with the fuzzy controller 
(see Hanuš et al., 2002), with a non-linear controlled 
system, with a system with delay (see Hanuš et al., 
2003), in SISO or MIMO system. The interpolation 
between the nominal points of the set and the 
iteration is possible (see Herajn and Janeček, 2003). 
It is possible to change the transfer functions of the 
whole set by changing the sampling frequency (see 
Hanuš and Tůma, 2004a). The results of the testing 

confirm that the proposed hybrid control strategy is 
able to achieve optimal or nearly optimal control 
performance under a variety of conditions and with a 
general class of controlled systems. Further research 
directions will be focused on application of this 
hybrid strategy to systems that are itself of hybrid 
nature (see e.g. Hlava and Šulc, 2002 for introduction 
to hybrid systems). 
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