
ON THE UTILITY OF LINEAR

TRANSFORMATIONS FOR

POPULATION-BASED OPTIMIZATION

ALGORITHMS

Petr Poš́ık
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Abstract: Many population-based real-valued optimization algorithms assume
statistical independence of individual parts of solution. This assumption is only
seldom fulfilled. In real domain, some coordinate transformations can be applied
to reduce the dependency among variables making the optimization problem easier
to solve. This article reviews two common linear transformations, principal and
independent component analysis (PCA, ICA). Although ICA should work for our
purposes better, it is shown that there are cases when PCA results in a better
performance. Copyright c©2005 IFAC
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1. INTRODUCTION

Optimization problems can be found in many ar-
eas of human activities. In real domain, the para-
metric optimization presents the typical one. It
arises e.g. when fitting a parametric model to the
data set at hand. Population-based optimization
algorithms (such as evolutionary algorithms, EAs)
were found very successful solving similar prob-
lems. They do not need any information about
the inner structure of the problem and they are
able to escape from local optima.

However, many of these algorithms use such mech-
anisms which assume the individual features of the
potential solutions to be statistically independent
of each other. This unrealistic assumption is often
broken. Nevertheless, there are some possibilities
how to reduce the relationships among variables.
This possibility is offered to us by certain coor-
dinate transformations. The individuals can live
in an environment where their lives are easier, i.e.

where it requires less effort from the algorithm to
breed new and better individuals than it would
require when evolving in the original environment
where the competing for survival takes place. This
principle is not new in EAs, it can be thought of as
a kind of genotype-phenotype mapping with the
exception that this mapping is here adapted on
purpose.

Inside many EAs various coordinate transforma-
tions can be used. The main requirement on such
a transformation should be its reversibility. We
need the ‘forward’ part of the transformation to
reduce the dependencies among variables so that
the evolution can take place in the transformed
space. The ‘backward’ part of transformation (or
the inverse transformation) is to transform newly
generated offsprings back into the original space
in order to be evaluated (the objective function is
defined only in the original space).



Section 2 of this article describes two well-known
linear coordinate transformations, principal com-
ponents analysis (PCA) and independent compo-
nent analysis (ICA). Their use in EAs in not new.
In (Hansen and Ostermeier, 2001), the PCA is
implicitly used in a mutative evolutionary strat-
egy with covariance matrix adaptation. EA with
ICA (similar to the one used in this article) was
described in (Zhang et al., 2000), and (Cho and
Zhang, 2004) used even a finite mixture of ICA
models. Although the name suggests that ICA
should be more appropriate kind of transforma-
tion, the experiments in Sec. 3 show that the
choice is not that easy and deserves a special care.
Section 4 concludes the paper and suggests some
explanations of the observed phenomenons and
proposes directions for further research.

2. POPULATION PREPROCESSING

As already stated, the dependencies in the data
set can be reduced by population preprocessing.
In this section, two linear methods are described.
They can be used with any real-valued popula-
tion based algorithm. In this article, an univari-
ate marginal distribution algorithm (UMDA) is
used. This algorithm assumes the independence
of individual variables. For each variable it builds
a marginal probabilistic model, the joint prob-
ability is then given by a product of marginal
histograms and new individuals are produced by
sampling from this model. The algorithm used
herein uses so-called equi-height histograms (see
e.g. (Poš́ık, 2003)). The only difference is that
before creating the probabilistic model of the pop-
ulation, the data points are preprocessed by PCA
or ICA, and, of course, after creating new off-
springs they are transformed back by the inverse
transformation.

2.1 Principal Components Analysis

Perhaps the best known linear coordinate trans-
formation is the so-called principal components

analysis (PCA). It is used mainly for dimension-
ality reduction in multivariate analysis and its ap-
plications range from data compression, through
image processing, to visualisation, pattern recog-
nition, or time series prediction.

The PCA is most commonly defined as a linear
projection which maximizes the variance in the
projected space (Hotelling, 1933). We have to find
such an orthogonal coordinate system, in which
the variance of the data is maximized along the
axes. It can be easily accomplished by performing
the eigendecomposition of the data sample co-
variance matrix. One additional property of PCA
is worth mentioning: among all orthogonal linear

projections, the PCA projection minimizes the
squared reconstruction error.

To formalize the computations, let us denote the
set of centered data points at hand (the popula-
tion) as X = (x1,x2, ...xN ). The population ma-
trix X is of size D×N , where D is the dimension
of the input space and N is the population size.
The covariance matrix of size D × D is given by

C =
1

N
XX

T . (1)

If we find the eigendecomposition of this matrix,
we find the linear transformation which decorre-
lates the components of individuals, i.e. we need
to compute a diagonal matrix λ of order D and
symmetric matrix V of size D × D such that
the condition λC = VC holds. Matrices λ and
V contain the eigenvalues and eigenvectors of
the covariance matrix C, respectively. Then, the
transformation

Y = V ×X (2)

rotates the coordinate system of the population
matrix X in such a way that the coordinates
of individual data points in matrix Y are not
correlated. The inverse transformation can be
done simply by inverting the eigenvectors matrix
V, i.e.

X = V
−1 ×Y. (3)

2.2 Independent Components Analysis

The PCA described in Sec. 2.1 can be also de-
scribed in these terms: it is a linear transforma-
tion which minimizes the correlations 1 (the ‘first-
order’ dependencies) among variables. It would be
very nice to have similar algorithm for creating
a linear transformation minimizing a compound
criterion which would take into account also the
‘higher-order’ dependencies among variables.

The independent components analysis (ICA) (see
e.g. (Hyvärinen, 1999)) is a rather recent data
analysis technique. Its primary aim is to find such
a linear transformation which makes the trans-
formed variables as independent of each other as
possible. This goal makes the ICA a very appeal-
ing preprocessing technique for the use in EAs.

2.2.1. ICA Basics We can define the ICA in
several ways. If we select the mutual information
(MI) as the measure of dependency, we can define
the ICA as a process of finding such a linear
transformation which minimizes the MI.

1 In fact, PCA not only minimizes the correlations, but
puts them away completely.



Unfortunately, direct minimization of MI over
possible linear transformations would require to
estimate the density functions which is very hard
(very uncertain and often very time consuming)
work. In (Hyvärinen and Oja, 2000), it is shown
that:

“. . . ICA estimation by minimization of mutual

information is equivalent to maximizing the sum

of non-gaussianities of the estimates, when the

estimates are constrained to be uncorrelated. . . . ”

From the above citation it is clear that due to the
constraint of uncorrelated projections, the ICA
need not estimate the joint probability density —
the problem is very simplified and can be solved
just by searching for 1-dimensional subspaces
with the greatest measures of non-gaussianities
of the projections. The general measure of non-
gaussianity is usually the negentropy. If H(X) is
the differential entropy of a random variable X ,
then the negentropy of a random variable J(X) is
defined as

J(X) = H(XGauss) − H(X), (4)

where the XGauss is a random variable with
normal distribution. It is well known fact, that a
gaussian variable has the largest entropy among
all random variables with equal variance, thus
the negentropy is always nonnegative and zero for
normal distribution, so that it can be used as a
measure of non-gaussianity. Nevertheless, it still
remains only theoretical measure because one still
has to estimate the probability distributions.

In practice, we have to resort to some approxima-
tions of negentropy. Some of the approximations
can be found in (Hyvärinen and Oja, 2000). They
usually emphasize the differences from the nor-
mal distribution, i.e. they return greater values
if the empirical distribution is spiky, multimodal
or has heavy tails. Finding the most independent
directions is judged only by the shape of the 1D
projection distributions. During the EA run it
can easily happen that the distribution in some
direction has a more non-gaussian shape then the
distribution in a direction which is really indepen-
dent. This can mislead the EA that uses ICA as
a preprocessing step.

2.2.2. ICA Features The fact that ICA can be
performed by searching for the most non-gaussian
directions is appealing also from an empirical
point of view. The most non-gaussian projections
(i.e. spiky, multimodal, clustered, etc.) are the
most interesting ones. This principle was also used
in a statistical method for visualization of the
most interesting views of the data — in projection

pursuit (Friedman, 1987).

In the ICA model, only one of the indepen-
dent components can have a normal distribution.
Greater number of gaussian variables would make
the ICA model unidentifiable because all rotations
of n-dimensional gaussian random cloud of data
points are in fact equivalent.

The outcome of PCA and ICA can be visualized
by means of contour plots of the linear compo-
nents extracted from the data. Individual contours
are parallel to each other and contours of the first
component are perpendicular to the contour lines
of the second component. An example of the dif-
ference between principal and independent com-
ponents can be seen in Fig. 1. This data resemble
the population in certain phases of evolution of
the 2D Griewangk function. In this case, the PCA
actually discovers the most independent compo-
nents, while the ICA (operating on the basis of
maximizing the nongaussianity of the projections)
almost does not rotate the data. This is an exam-
ple of a data set when the ICA fails to find the
independent components and PCA gives better
result (see Sec. 3.4). This will be also seen in the
results of experiments in the next section.

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
PC 1

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
PC 2

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
IC 1

−10 −5 0 5 10
−8

−6

−4

−2

0

2

4

6

8
IC 2

Fig. 1. Principal and independent components
for a data set similar to a population when
evolving 2D Griewangk function.

3. EXPERIMENTS WITH PCA AND ICA

Several experiments were carried out to demon-
strate the influence of population preprocessing
using PCA and ICA. The 2- and 10-dimensio-
nal Griewangk function with the 2- and 20-
dimensional Two Peaks function were selected for
this demonstration. The Griewangk function is
non-separable function with one global optimum
at point (0, . . . , 0) and several local optima sur-
rounding and hiding the global one. The com-
plexity of this test function decreases with dimen-
sionality. The Two Peaks function is completely
separable function with one global optimum at
point (1, . . . , 1) and many local optima with much
greater basins of attraction.



3.1 Evolutionary Model

For the comparison, the UMDA with marginal his-
togram models (see (Poš́ık, 2003)) was used. This
kind of algorithm assumes the individual variables
to be statistically independent of each other. In all
experiments the following evolutionary model was
used.

(1) Initialize and evaluate the population.
(2) Based on the current population, perform the

PCA or ICA of the parents.
(3) Model the transformed parents by marginal

histograms.
(4) Sample N new offsprings from the model.
(5) Transform the new offsprings to the original

space using inverse PCA or ICA transforma-
tion.

(6) Evaluate them.
(7) Join the old and the new population to get a

data pool of size 2N .
(8) Use the truncation selection to select the

better half of the data points (returning the
population size back to N).

(9) If the termination criteria are not met, go to
Step 2.

This cycle was repeated until the number of func-
tion evaluations exceeded 50,000. The first set of
experiments was carried out without any prepro-
cessing. The second and third set of experiments
uses the PCA and ICA preprocessing, respec-
tively.

3.2 Monitored Statistics

Population sizes of 20, 50, 100, 200, 400, 600, and
800 individuals were used. Each experiment was
repeated 20 times with the same settings. During
all experiments several measures of the efficiency
were tracked:

• BSF (Best-so-far fitness). Average fitness of
the best individual after 50,000 evaluations
in all 20 runs.

• StdevBSF. The standard deviation of the
best fitness after 50,000 evaluations in all 20
runs.

• Found0.1 (Found0.01, Found0.001 ). As the
evolution progresses, it is checked how many
times (out of the 20 runs) the best solution
is in the ‘0.1 neighborhood’ (0.01, 0.001 re-
spectively) of the global optimum. E.g. for
0.1 neighborhood, the condition |xBSF

i −
xOPT

i | < 0.1 for all i must hold.
• #Evals0.1 (#Evals0.01, #Evals0.001 ). The

average number of evaluations needed to get
to the 0.1 neighborhood (0.01, 0.001 respec-
tively) is computed only from the runs in
which the algorithm succeeded to get that
close to the global optimum.

• PopSizeUsed. Population size for which the
results are reported.

• TimeElapsed. The average length of one run
in seconds. Only informative measure, be-
cause the number of PCA or ICA invocations
depends on the population size.

3.3 Results and Discussion

The results are presented in Table 1. Reported
statistics are chosen for that population size for
which the algorithm gained the best average BSF
score.

PCA and ICA rotate the population to find un-
correlated or the most independent version of the
population, respectively, which can be a very hard
and sometimes very unprecise work due to the
finite samples. Let us first review influence of
the preprocessing when optimizing the Griewangk
function. Both types of preprocessing are useful
for both versions of the function, 2D and 10D.
The UMDA coupled with PCA or ICA is able
to gain better solutions than UMDA without any
preprocessing. However, there is a difference be-
tween PCA and ICA: for 2D Griewangk function,
PCA preprocessing works better, while for the
10D version the ICA is preferable.

Different results can be seen for the Two Peaks
function. The best choice here is not to use any
preprocessing at all because the function is sepa-
rable and any rotation makes it only harder. The
results confirm this statement. Nevertheless, we
can compare the PCA and ICA on this function
and ICA seems to be much better transformation
for this case — the UMDA with ICA outper-
formed the UMDA with PCA in the quality of the
found solution, in the speed and in the reliability
of finding a solution. Interesting results (although
not reported) were observed for the UMDA with
PCA when solving the 20D Two Peaks function.
Almost independently of the population size, the
average quality of the solution found after 50,000
evaluations was about 20. The reported case for
the population size of 20 is the only exception.
Probable reason of this behavior is that with only
20 data points the PCA cannot be estimated reli-
ably and because of these ‘errors’ in estimation the
algorithm can produce improving steps more of-
ten. With population size 50 and higher, the PCA
produces more stable transformation which does
not allow the algorithm to improve the solutions
very often.

3.4 Example Test of Independence

In the previous subsection, it was experimentally
shown that there are situations when PCA can



Table 1. Results of experiments. Statistics described in Sec. 3.2 are presented in
each ‘cell’ in the following order: 1st row: BSF ± StdevBSF. 2nd row: Found0.1,
Found0.01, Found0.001. 3rd row: #Evals0.1, #Evals0.01, #Evals0.001. 4th row:

PopSizeUsed, TimeElapsed.

Alg. 2D Griewangk 10D Griewangk 2D Two Peaks 20D Two Peaks

UMDA 0.0024 ± 0.0026 3.7 · 10−4 ± 0.0017 0 ± 0 0.0027 ± 0.0059

14 0 0 19 19 19 20 20 20 20 20 18
3887 — — 17906 28012 37612 541 1621 2621 9941 18421 26890

800, 42.4 600, 211.1 200, 27.6 400, 563.7

UMDA/PCA 9.3 · 10−6
± 4.1 · 10−5 0 ± 0 0.44 ± 0.41 14.93 ± 2.008

20 19 18 20 20 20 12 6 4 0 0 0
3198 14537 17280 4793 7613 10413 4205 28960 21606 — — —

600, 44.9 200, 214.0 600, 60.0 20, 67.9

UMDA/ICA 0.001 ± 0.0023 0 ± 0 0.0167 ± 0.0515 4.1 ± 4.3
18 12 10 20 20 20 20 18 18 6 2 2

3255 28904 33518 2913 4528 6353 2294 13319 17497 18436 18796 22596
600, 61.5 100, 608.1 600, 59.6 200, 1236.4

produce more independent data points than ICA.
It was the case of 2D Griewangk function. This
fact is investigated in more theoretical way in this
section.

Generally speaking, it is the independence of in-
dividual variables which plays the major role in
the EA efficiency if we use the UMDA. However,
it is very hard to test for the independence of
continuous variables. The notion of independence
is usually defined by the probability density func-
tions (PDFs). Let the p(X1, X2) be the joint PDF
of variables X1 and X2. We say that X1 and X2

are independent if the joint PDF can be factorized
as follows:

p(X1, X2) = p1(X1)p2(X2), (5)

where p1 and p2 are the marginal PDFs. This defi-
nition can be extended to any number of variables.
If we wanted to test the independence based on
current data set directly using the definition 5,
it would require to build some approximations of
the PDFs. For the example purposes the following
simplification is used. It is possible to discretize
the domain of each variable into C bins. Then,
we can treat the data points as measured on
categorical scale and thus we can use the χ2-test
of independence for contingency tables. Of course,
this test is only an approximation but its value lies
mainly in the fact that it is relatively fast and not
complicated.

Let us use this test of independence for a data
pattern that can be observed during evolution of
the 2D Griewangk function (the data points form
five clusters in a pattern which evokes the number
5 on a dice). First, the output of ICA is analyzed.
After that, the same analysis is carried out for the
output of PCA.

Each of the two variables is divided to 3 equal in-
tervals. The 100 data points are uniformly divided

into the 5 clusters. The observed contingency ta-
ble is then depicted in Fig. 2 (left).

20 20 40
20 20

20 20 40

40 20 40 100

16 8 16 40
8 4 8 20
16 8 16 40

40 20 40 100

Fig. 2. Observed (left) and expected (right) con-
tingency table

The contingency tables are matrices and their
cells contain the number of data points which
belong to the respective D-dimensional interval
(2-dimensional in this example). Let the observed
contingency table be O with the entries Oi,j ,
i, j = 1, 2, 3. Let us further describe the marginal
sums of rows as Oi,: =

∑
j Oi,j (the last column

of the tables in Fig. 2) and the marginal sums
of columns as O:,j =

∑
i Oi,j (the last row of the

tables in Fig. 2). The lower right entry of the table
is N — the overall number of data points, i.e. the
sum of all table entries.

The χ2-test only compares the observed frequen-
cies with the expected ones. In order to use
this test as the test of independence we have
to construct the contingency table of frequencies
expected when the assumption of independence
would hold. Let the expected contingency table
be E. Its entries (see Fig. 2, right) can be easily
computed as

Ei,j =
Oi,:O:,j

N
. (6)

The test statistic Chi2 will then be a measure of
how much the observed contingency table differs
from the expected one and we can define it as
follows:

Chi2 =
∑

i,j

(Oi,j − Ei,j)
2

Ei,j

. (7)



The Chi2 random variable has the χ2 distribution.
If the number of rows is I and the number of
columns is J , the number of degrees of freedom
for the χ2 distribution is (I − 1)(J − 1), i.e. for
this example it is equal to 4. The p-value of this
test (computed as p = 1− CDFχ2(dof, Chi2)) is
the probability of observing this or greater Chi2

if the assumption of independence holds. Thus,
the p-value can be interpreted as a measure of
independence of the two variables. If the p-value
is close to zero we can be pretty sure that the
variables are not independent. If the p-value is
not close to 0, the variables can be considered
as independent (strictly speaking, we do not have
enough evidence to prove their dependence).

Coming back to our example, computing the
test statistic and the p-value results to Chi2 =

4 (20−16)2

16 + 4 (0−8)2

8 + (20−4)2

4 = 4 + 32 + 64 = 100
and p = 1 − CDFχ2(4, 100) = 0, thus we can
say that based on our finite sample from the
distribution, there is almost no chance that the
variables are independent.

Now, we try to use the same test for the data
rotated by the outcome of the PCA analysis. In
that case the contingency tables look like this:

20 20
20 20 20 60

20 20

20 60 20 100

4 12 4 20
12 36 12 60
4 12 4 20

20 60 20 100

Fig. 3. Observed (left) and expected (right) con-
tingency table for data rotated by PCA.

The results of the test are Chi2 = 4 (0−4)2

4 +

4 (20−12)2

12 + (20−36)2

36 = 16 + 21.33 + 7.11 = 44.44
and p = 1−CDFχ2(4, 44.44) = 5.2×10−9. We can
see, that even in this case we can hardly describe
the variables as independent in an absolute sense,
but we can state that they are ‘more independent’
than in the previous case (preprocessed by ICA).

4. CONCLUSIONS

The results presented in this article and their
discussion suggest that there is no general rule
of the form ‘preprocess the population with ICA
and you will get better results for sure’. Although
ICA preprocessing seems to work well on many
problems, there are cases when PCA results are
better (sometimes the best transformation is no
transformation). Thus, the decision as to which
preprocessing method to use should be taken on a
case to case basis, or we need a tool which would
evaluate the quality of transformations suggested
by the PCA and ICA. Such a tool would enable us
to choose among all possibilities (no transforma-
tion, PCA, ICA, . . . ) the ‘best’ one during the run

of the algorithm. This role can be played by some
tests of independence similar to that suggested
in Sec. 3.4. These tests are subject to further
research.

The population preprocessing can be also thought
of as a kind of simple linkage learning. Although
other methods with the linkage learning capability
are likely to do their jobs better, they create
rather complex models of dependency structures
among variables and require special methods for
creating new individuals. On contrary, population
preprocessing with linear transformations has lim-
ited potential for reducing the dependencies, but
allows us to use almost all conventional methods
of crossover and mutation.
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