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Abstract: This paper compares two different linear matrix inequality (LMIs)
algorithms for the static H∞ loop shaping synthesis problem. One effective
and popular algorithm to solve fixed-order control problems is the so-called
Cone Complementary Linearization algorithm (CCL). The CCL algorithm is
guaranteed to produce, at each iteration, a reduced order controller. The algorithm
proposed in this paper is quite different in its nature as it is based on sufficient,
potentially conservative, LMI conditions. Our algorithm is compared to the Cone
Complementary algorithm on a collection of plants taken from the benchmark
library COMPleib. The numerical experiments indicate that our algorithm is
computationally more attractive and more efficient than the cone complementary
algorithm. Copyright c©2005 IFAC.
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1. INTRODUCTION

This paper compares two different linear ma-
trix inequality (LMIs) algorithms for the static
version of the H∞ loop shaping design proce-
dure of McFarlane and Glover (1992). The so-
lution for static or reduced order H∞ problems
involves minimizing the rank of a matrix vari-
able subject to linear matrix inequalities con-
straints. Solving this rank minimization problem
is in general very difficult see e.g. (Iwasaki et
al., 1994), (Syrmos et al., 1997), (Arzelier and
Peaucelle, 2002), (Leibfritz, 2001). Over the recent
years, simple heuristics have been developed to
handle rank minimization problems in the LMI
framework. One effective and popular algorithm
is the so-called iterative Cone Complementary
Linearization algorithm (CCL) proposed by El
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Ghaoui et al. (1997), where the rank minimization
problem is approximated by a sequence of semi-
definite programs involving the minimization of
the trace of a certain semi-definite matrix vari-
able.

Alternatively, and at the expense of conservatism,
the rank constraint can be directly incorporated
into the LMI formulation of the problem. The
algorithm proposed in this paper is based on that
principle and leads, in a number of applications,
to a conservative but nevertheless very efficient
algorithm. The new algorithm proposed in this
paper and the Cone Complementary algorithm
are compared on a collection of plants taken from
the benchmark library COMPleib (Leibfritz and
Lipinski, 2004). This library includes a number
of examples collected from real-world applica-
tions as well as pure academic problems. The
current version of COMPleib contains about 80
plants which are static output feedback stabiliz-



able. The numerical experiments carried out with
these plants indicate that the sufficient condition
algorithm proposed in this paper is computation-
ally more attractive than the cone complementary
algorithm.

The paper is organized as follows. Section 2 intro-
duces the background material for static output
feedback stabilization. Section 3 presents the suf-
ficient LMI conditions for static H∞ loop shap-
ing control synthesis. Sections 4 reviews the cone
complementarity algorithm and introduces an al-
gorithm based on the sufficient LMI conditions
introduced in section 3. Section 5 provides numer-
ical results. Finally, section 6 ends the paper with
some conclusions.

2. PRELIMINARIES

Let us consider a linear time invariant system
described by state-space equations

{

ẋ = Ax + Bu
y = Cx

(1)

where A ∈ Rn×n, u ∈ Rm is the control input,
y ∈ Rp is the measured output. The pairs (A,B)
and (A,C) are assumed to be, respectively, stabi-
lizable and detectable, we assume that C and B
are full rank.

Our aim is to compute a static output feedback
law u = Ky that ensures the stability of the
closed-loop system Acl = A + BKC.

Lemma 1. (Finsler’s lemma) Let X be a given
symmetric matrix and let Z be a matrix such that

ξT Xξ < 0

for all nonzero vector ξ such that Zξ = 0. Then
there exists a constant σ > 0 such that

X − σZT Z < 0

Proof. See e.g. (Boyd et al., 1994).

Lemma 2. The following statements are equiva-
lent.

i) There exists a stabilizing static output feedback
gain.
ii) There exists a positive-definite matrix R > 0
such that

NT
B (AR + RAT )NB < 0,

NT
C (R−1A + AT R−1)NC < 0,

where NB and NC denote bases of the null spaces
of BT and C, respectively.

Proof. See e.g. (Iwasaki et al., 1994).

3. MAIN RESULTS

3.1 Static Output Feedback Stabilization

Lemma 3. The following statements are equiva-
lent.

i) There exists a stabilizing static output feedback
gain.
ii) There exist a positive-definite matrix R > 0, a
matrix L of compatible dimension and a positive
real number γ such that

AR + RAT − γBBT < 0, (2)

(A + LC)R + R(A + LC)T < 0. (3)

Proof. Using Finsler’s lemma the conditions of
statement ii) can be rewritten as:

There exist R > 0 and positive real numbers σ1,
σ2 such that

AR + RAT − σ1BBT < 0, (4)

AR + RAT − σ2RCT CR < 0. (5)

Clearly, if (4) and (5) are satisfied for some posi-
tive real numbers σ1 and σ2, then they are also
satisfied if one replaces σ1 and σ2 with γ =
max(σ1, σ2). Now, let L = −γRCT /2. With such
a matrix L, condition (3) reduces to condition (5)
and lemma 3 is proven �

For a given matrix L such that A + LC is stable,
the conditions of lemma 3 are linear in R and γ.
This contrasts with the well-known static output
feedback conditions of lemma 2 which involve R
and R−1. Also, when L is given, conditions (4)
and (5) are sufficient for the existence of a static
output feedback gain.

The feasibility of the linear conditions of lemma
3 strongly depends on the choice of the matrix L.
There is infinite number of matrices L rendering
A + LC stable. However, there is no systematic
rule for selecting the matrix L so that the LMI
system (2) and (3) is feasible. Therefore, we are
forced to use some heuristics to simplify the prob-
lem. A computationally attractive way to generate
a scalar dependent set of matrices L such that
A + LC is stable is given by the following lemma.

Lemma 4. Let L = −Y CT where Y ≥ 0 is the
stabilizing solution to

AY + Y AT − αY CT CY + BBT = 0. (6)

For any 0 < α < 2 the matrix (A + LC) is a
stability matrix.



Proof. Since (A,B) is stabilizable and (C,A) is
detectable, it is well-known that the above Riccati
equation has a unique stabilizing positive semi-
definite solution Y . First, note that α must be
strictly positive to guarantee the existence of a
semi-definite positive solution Y for (6). Now,
(A + LC)Y + Y (A + LC)T := Q = −BBT − (2−
α)Y CT CY < 0. From (Zhou et al., 1995), A+LC
is stable if Y ≥ 0, Q < 0 and (Q, (A + LC)T )
is detectable. Hence, if the pair (A + LC,Q) is
stabilizable, one can conclude on the stability of
A + LC. Because, Q is a square and a full rank
matrix, it is clear that the pair (A + LC,Q) is
stabilizable and therefore A+LC is stable for any
value of α in ]0, 2[ �

Remark: Lemma 4 guarantees the stability of
A+LC for 0 < α < 2. But, note that A+LC can
be stable even for α > 2.

4. STATIC H∞ LOOP SHAPING CONTROL

4.1 LMI formulation

Without loss of generality, a static controller is
considered. Let Gs be a strictly proper plant of
order n having a stabilizable and detectable state-
space realization:

Gs :=

[

A B
C 0

]

(7)

with A ∈ Rn×n,B ∈ Rn×nu , C ∈ Rny×n. Gs

can be considered the shaped plant in the Glover-
McFarlane H∞ loop shaping design procedure.

A minimal normalized left coprime factorization
of Gs = M̃−1Ñ is given by, (Zhou et al., 1995),
(Skogestad and Postlethwaite, 1997)

[

Ñ , M̃
]

=

[

A + LC B L
C 0 I

]

, (8)

where L = −Y CT and the matrix Y is the unique
symmetric positive semi-definite solution to the
algebraic Riccati equation

AY + Y AT − Y CT CY + BBT = 0 (9)
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Fig. 1. Open loop Glover-McFarlane H∞ loop
shaping interconnection

Theorem 1. Let L = −Y CT where Y ≥ 0 is the
stabilizing solution to (9). There exists a static
loop shaping controller K such that

∥

∥

∥

∥

[

K
I

]

(I + GsK)−1M̃−1

∥

∥

∥

∥

∞

< γ (10)

if γ > 1 and if and only if there exist two positive
definite matrices R and S solving the inequalities

S(A + LC) + (A + LC)T S − γCCT < 0

(11)

W (R,L, γ) :=




AR + RAT − γBBT RCT −L
CR −γIp Ip

−LT Ip −γIp



 < 0

(12)

K(R,S) :=

(

R I
I S

)

≥ 0 (13)

and rank(K(R,S)) = n.

Proof. See (Prempain and Postlethwaite, 2004).

It is well-known that the minimization of a rank
constraint is hard to solve. Various heuristics have
been developed to handle problems of this type.
One simple heuristic, applicable when the matrix
is symmetric positive semi-definite, is to minimize
its trace in place of its rank. We have the following
result:

Theorem 2. There exists a stabilizing static-output
feedback controller if and only if the global mini-
mum of the following optimization problem

min trace(RS) (14)

subject to (11), (12) and (13) is equal to n.

Proof. See e.g. (El Ghaoui et al., 1997).

To solve such a problem, El Ghaoui et al. (1997)
proposed a linear approximation of trace(RS).
More precisely, at point (R0, S0), a linear ap-
proximation of trace(RS) is trace(S0R + R0S) +
constant. This simple idea forms the basis of the
CCL algorithm given in the next section.

4.2 Sufficient LMI conditions

A direct way to enforce the rank constraint (the-
orem 1) merely consists of replacing S by R−1.
Doing so, the inequality (11) becomes

R−1(A + LC) + (A + LC)T R−1 − γCCT < 0

or equivalently

(A + LC)R + R(A + LC)T − γRCCT R < 0

Clearly, this last inequality is satisfied if



V (L,R) := (A + LC)R + R(A + LC)T < 0

Hence, we have the following result:

Corollary 1. There exists a static loop shaping
controller K such that

∥

∥

∥

∥

[

K
I

]

(I + GsK)−1M̃−1

∥

∥

∥

∥

∞

< γ

if γ > 1 and if there exists a positive definite
matrix R solving the inequalities

V (L,R) < 0 (15)

W (L,R, γ) < 0 (16)

Note that the conditions of this corollary are lin-
ear in R and γ. Hence, for a given matrix L, these
conditions are amendable to LMI optimization.

5. ALGORITHMS FOR STATIC LOOP
SHAPING SYNTHESIS

5.1 Algorithm 1: Cone Complementarity Algorithm
(CCL)

To solve the optimization problem (14), a linear
approximation of trace(XS) takes the form

φlin(R,S) = constant + trace(S0R + R0S)

From (17) the following iterative algorithm (El
Ghaoui et al., 1997) is:

(1) Find a feasible point S0, R0. If there are none,
exit, set k = 1.

(2) Solve the LMI problem
minimize Ok := trace(SkRk−1+RkSk−1)/ε+

γ subject to (11), (12) and (13).
(3) Go to step 4 if ‖Ok − Ok−1‖ < tol where

tol is given positive number. Otherwise, set
k = k + 1 and go to step 2.

(4) Terminating phase. Try to reconstruct the
controller K using the analytic formulae
given in (Iwasaki and Skelton, 1994). The
final feedback controller KST is then con-
structed using the static output feedback
controller K with the shaping functions W1

and W2 such that KST = W1KW2. If the
reconstruction fails, reduce ε and go back to
step 2.

When γ is fixed, El Ghaoui et al. (1997) showed
that the algorithm converges and finds, at every
step k, a controller of order that is less or equal
to n−max(nu, ny). This is quite a theoretical re-
sult. Sometimes, in practice, numerical difficulties
prevent the reconstruction of a controller of that
order.

It worth noting that the convergence property
of the algorithm is not affected if, in step 2, γ
is a decision variable of the LMI optimization
problem.

5.2 Algorithm 2. Derived from the Sufficient LMI
conditions of Corollary 1

As discussed earlier, there is no theoretical result
enable us to determine a suitable matrix L to
guarantee the feasibility of the LMI conditions
(15) and (16). To overcome this problem, we
suggest to generate an α-dependent set of matrices
L (using Lemma 4) and then, for each L, to check
the feasibility of the LMI conditions (15) and (16).
As mentioned earlier, it is interesting to extend
the range of α beyond 2, providing that A + LC
is stable. The algorithm is described as follows:

(1) Define Λ = [α1, ..., αn] a row vector of n
logarithmically equally spaced points repre-
senting various values of α. n = 50, α1 = 0.01
and αn = 100 suffice in practice.

(2) For j = 1, 2, ..., set α = αj in (6) and com-
pute Lj := −YjC

T where Yj is the unique
positive semi-definite solution to the Riccati
equation (6). Then, solve the problem Pj :
minimize γj subject to Vj := V (Lj , Rj) <
0, Wj := W (Lj , Rj , γj) < 0, Rj > 0. If
Pj is feasible then reconstruct the controller
Kj using, for instance, the analytic formulae
given in (Iwasaki and Skelton, 1994).

(3) If for j = 1, 2, ..., the problem Pj is not feasi-
ble then stop (the method is not applicable).

(4) Terminating phase. Select the static gain K
among the Kj leading to the best closed-
loop γ attenuation (γ∗) (i.e. the attenuation
obtained with the augmented plant including
the normalized coprime factorization of the
shaped plant). The final feedback controller
KST is then constructed using the static
output feedback controller K with the shap-
ing functions W1 and W2 such that KST =
W1KW2.

6. BENCHMARK EXAMPLES FROM
COMPLEIB 1.0.

COMPleib consists of examples collected from
the engineering literature and contains models
from real-wold application as well as pure aca-
demic models (Leibfritz and Lipinski, 2004). The
current version of COMPleib contains about 80
plants which are static output feedback stabiliz-
able. The library is useful for testing linear and
non-linear semi-definite optimization solvers such
as SeDuMi (Sturm, 2001) and PENBMI (Koc̃vara
and Stingl, 2003).



The static version of the Glover and McFarlane
design procedure described in this paper has been
tested on the Aircraft Models (AC), Helicopter
Models (HE), Jet Engine models (JE), Reactor
Models (REA) and Decentralized Interconnected
Systems (DIS) which are available in COMPleib.
This represents a collection of about 65 plants.
For each plant, the static version of the Glover
and McFarlane design procedure has been applied
with W1 and W2 equal to the identity matrix as
we were just interested in testing the ability of our
algorithm to find a static feedback controller.

For every run, the following parameters ε =
10−7 and tol = 0.1 were used for the CCL
algorithm. In addition, the maximum number of
iterations for the CCL algorithm has been fixed
to be 150. For algorithm 2, Λ has been selected
as a vector of 80 logarithmically equally spaced
points between 0.01 and 100. All the computations
were performed using SeDuMi (Sturm, 2001). For
both algorithms, the routine klmi from the LMI
MATLAB toolbox (Gahinet et al., 1995) is used
for the controller reconstruction.

Figures 2 and 3 are typical of algorithms 1 and 2.
The figures correspond to the aircraft model ’AC1’
of COMPleib, a 5 states, unstable, minimum
phase model with 3 inputs and 3 outputs.
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Fig. 2. CCL algorithm: left γ, right λi(RS − In)
for the plant AC1

Figure 2 shows the typical behaviour of the CCL
algorithm. Clearly, the convergence of γ is slow
and exceeds the maximum number of iterations
(N = 150). The right plot of figure 2 shows
the eigenvalues of RS − I versus the iterations.
This plot suggests that the plant is Static Output
Feedback stabilizable. In this case, the routine
klmi was able to reconstruct a static controller
leading to a final closed-loop attenuation γ = 7.79.

Figure 3 shows the evolution of γ in terms of α
obtained with the algorithm presented in section
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Fig. 3. Algorithm 2: γ versus α for the plant AC1

5.2 (algorithm 2). In this case, our algorithm
works better than the CCL algorithm since it
leads to a better closed-loop attenuation: γ∗ =
5.085 for α = 1.3384.

Table 6 compares the performance of our algo-
rithm (algorithm 2) with the cone complementar-
ity algorithm (algorithm 1). The plants ACi are all
static output feedback stabilizable. The first col-
umn contains the plant orders obtained after using
the MATALB command minreal which computes
minimum state space realizations. In fact, some
plants in COMPleib are not in minimal state-
space form (e.g. AC13 and AC14). This may lead
to numerical difficulties. The 3rd column contains
the closed-loop gain attenuation achieved with the
CCL algorithm. The algorithm is considered to
fail if it is not possible to reconstruct a static
output feedback controller with the matrices R
and S returned at the end of the optimization
process. The figures in parentheses indicate the
order of the controller obtained in the case of algo-
rithm failure. The table shows that our algorithm

Table 1. Algorithm performances for the
aircraft models of COMPleib

ACi Plant γ α γ∗

order (alg. 1, CCL) (alg. 2) (alg. 2)

1 5 7.79 1.33 5.08
2 5 7.79 1.33 5.08
3 5 10.64 0.94 3.91
4 3 2.62 0.94 2.18
5 4 3421 1.06 2930
6 7 5.12 1.19 3.51
7 6 4.96 0.74 3.39
8 6 29.1 fails (5) 8.64 29.9
9 10 32.1 fails (9) 3.02 19.3
10 48 n/a n/a n/a
11 5 fails (2) 0.74 4.49
12 4 67.8 (3) 1.06 2.15

13 26 fails 0.8 45.65

14 26 fails 0.8 45.65

15 4 3.46 1.5 2.93

16 4 3.42 1.5 2.90

17 4 1.7 0.94 1.54

18 10 fails 100 8e3

Emmanuel
Underline



performs significantly better than the CCL algo-
rithm: it provides smaller closed-loop attenuation
and, most importantly, it did not fail to find static
controllers on this batch of plants.

Algorithm 2 has been tested on all the other plants
of COMPleib which are SOF and of order less
than 40. This represents a collection of 67 plants.
The cases where our algorithm was not able to
find a solution are: TF3, NN1, NN5, NN6, NN7,
NN10, NN12. Note that the SISO plants NN3
and RE4 have been excluded from the list since
they are indeed not SOF (a simple root locus can
be used to verify this). Hence, our algorithm is
successful for 89% of the cases.

It is worth mentioning that, at each iteration, the
two algorithms do not require the same amount
of computer work. The cone complementary al-
gorithm involves n(n + 1) + 1 decision variables
while our algorithm involves only n(n + 1)/2 +
1 decision variables, where n is the plant order.
Hence, for a given problem and at each iteration,
our algorithm requires approximately 8 times less
computer work than the cone complementary al-
gorithm. Also, a major advantage of our algorithm
is that it virtually does not require any tuning
parameters apart from α.

7. CONCLUSIONS

In this paper, a simple method for static out-
put feedback control synthesis is presented. The
method has been extended to the well-known
McFarlane and Glover H∞ design method. The
effectiveness of this iterative synthesis method has
been demonstrated on various numerical exam-
ples. Unlike previous algorithms, the algorithm
does not require (A,B,C) to be a minimum phase
plant (Syrmos et al., 1997), (Garcia et al., 2003).
The numerical experiments carried out with the
plants of COMPleib indicate that the sufficient
condition algorithm proposed in this paper is com-
putationally more attractive than the cone com-
plementary algorithm. It worth mentioning that
the static version of the Glover-McFarlane design
procedure, presented in this paper, has been used
to design low order controllers for the BEll 205
helicopter. These controllers have been success-
fully implemented and flight tested (Prempain
and Postlethwaite, 2004). Future work is neces-
sary to clarify the relationship between the choice
of the gain matrix L and the feasibility of the LMI
conditions.
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