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Abstract: Control in robotics needs more and more precise models of the mechani-
cal parts of the structure and specially for a complex system such as a biped robot.
An important but difficult aspect of this work is the modeling of the mechanical
loss due to friction in the chain of transmission from the motor to the axis. Each
part losses are defined as a sum of three terms, one constant, another depending
only on the speed and the last depending on the torque transmitted. The robot
joint kinematic chain is modeled with three elements: the motor, the gearbox and a
rotational joint at the leg. The results show a good adequacy between measurement
and simulation with the proposed identification method in comparison with a
classic least square identification method. Copyright c©2005 IFAC
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1. INTRODUCTION

Works on the control of certain robots, in partic-
ular bipeds, require thorough preliminary studies
in simulation, precise modeling and identification.
A characteristic of the robots with legs lies in the
alternation of the phases of support and swing-
ing, characterized by low speeds and strong loads
for the first, high speeds and weak loads for the
second. This alternation between two operating
modes under even opposite very different condi-
tions makes the order very sensitive to the effects
of friction. As for any mechanical system, frictions
are difficult to model and many works are pub-

1 We thank all the participants of the group “Legged
Robots” from the ”Robéa” project of CNRS for their
assistance and their participation in discussions which
made it possible to advance this work. We thank more
particularly Messrs S. Lydoire, P. Poignet and G. Buche
which provided us certain experimental data.

lished on this subject (Armstrong (1988), Dupont
(1990)). The difficulty to obtain a precise model
comes owing from the fact that a great number of
parts intervene in the transmission, in particular
in the gear. The Rabbit robot was designed within
the framework of a French national project as an
experimental platform for the walk and race of
biped robots. Its modeling and the identification
of the parameters of the model form part of the
objectives of the project. This paper presents sug-
gestions for modeling and the results obtained by
using an approach based on the decomposition of
the kinematic chain in independent elements and
on the analysis of the mechanical power flow which
goes through these elements. This approach was
already carried out by other authors (Pennestri
et al. (1993), Abba et al. (1999), Filipoiu et al.
(1996)), the characteristic of our work lies in its
application to ”Harmonic Drive” gearboxes.



2. FRICTION MODELING

2.1 Relation between speed and friction

The relation between friction and speed is well
modeled in the literature. One considers, as the
fig. 1.(a) shows it, that friction comprises a princi-
pal term F0, known as kinematic Coulomb friction
(F = F0 at low speed q̇0), a term F1, known
as static Coulomb friction (F = F0 + F1 at null
speed), as well as terms of viscous friction propor-
tional to the speed and to its square. A traditional
formulation (referring for example to Canudas et
al. (1997)) is as follows:

F = (F0 +F1e
−(q̇/q̇0)

2
)sign(q̇)+f2q̇ +f3q̇|q̇|, (1)

where q̇ represents the speed.

The terms of friction F0 and F1 as well as the
coefficients of viscous friction f2 and f3 are often
regarded as constant. Friction is then a function
of the speed F = F (q̇). But this consideration
conforms to reality only in certain cases of very
simple machines (such as for example an electric
motor) or in certain very specific cases of opera-
tion, with constant loads. However the majority
of the mechanisms operates under variable loads.
It is the case of the robots in general and more
particularly of the legged robots because the legs
are either carrying the structure (support phase)
or are alternatively suspended there (swinging
phase). Under variable loads (see fig. 1.(b)), the
friction depends at the same time on the speed
and on the load: F = F (Γ, q̇) where Γ represents
the load. In the majority of the cases, the influence
of the load is more important besides than that
of the speed, in the sense that the increment of
friction on the effective field of load (at constant
speed) is higher than that which corresponds to
the speed range used (at constant load). If the
relations friction-speed were the subject of many
studies in the literature, those as Gogoussis et al.
(1987) concerning the relation friction-load-speed
are rarer.

In this paper, we propose a simple model, in which
the terms of Coulomb friction are governed by a
function closely connected to the load, F1 = cF0

and F0 = Fr +µ|Γ| where Fr is a term of constant
friction and µ the proportionality factor compared
to the load Γ, which will be defined with accuracy
later on. Thus, the general relation is obtained:

F = (Fr + µ|Γ|)
(

1 + c e
−
(

q̇
q̇0

)2
)

sign(q̇)

+f2q̇ + f3q̇|q̇|. (2)

The static friction is felt at the start but influ-
ences little the general working. Indeed, when the
direction of the movement is reversed, the speed
is canceled without relieving the materials. So the
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Fig. 1. Friction terms versus load and speed
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Fig. 2. Flow diagram of torque transmission

Stribeck effect can be neglected (F1 = 0 thus
c = 0). In addition, the quadratic viscous friction
effect appears little in the robot transmissions,
therefore the coefficient f3 can be neglected. By
setting out f2 = f , one obtains the relation
F = (Fr + µ|Γ|)sign(q̇) + f q̇.

2.2 Elements of transmission of a robot axis

In a robot, frictions appear in the various elements
of transmission of each axis. One can distinguish
three of them: the motor, the gearbox elements
(gears or screw and nut mechanisms) and finally
joining elements (bearings or smooth bearings).
Figure 2.(a) shows that the motor torque Γm is
transformed by all these elements of transmission
into joint torque Γ, which puts the body Sc mov-
ing (quantity of acceleration Jc q̈) after having
overcome gravity, and the centrifugal and Coriolis
effects (term H) :

Γ(q, q̇, q̈) = Jc q̈ + H(q, q̇), (3)

where q represents the vector of the articular
positions of the robot and Jc the line vector of
the global inertia matrix corresponding to the
considered axis of the robot. By so organizing the
axis of the robot, as that is proposed in Gogoussis
et al. (1993), all frictions are set off upstream the
joint torque. Now let us consider a mechanical
element St of the transmission, wherever it is,
located between the motor and the robot axis.
As figure 2.(b) suggests, the input torque Γe is
different from the output torque Γs, because of
the inertia Jt of the element and of the frictions
Ft, thus Γe = Γs + Jt q̈t + Ft.

The final relation between input and output
torques is obtained by replacing in the preced-
ing relation Ft by : (Fr + µ|Γs|)sign(q̇t) + fq̇t,
what gives Γe = (1 + µ sign(Γs q̇t))Γs + Jtq̈t +
Frsign(q̇t) + f q̇t. It is possible to justify very
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Fig. 3. Meaningful friction modeling in a prismatic
joint

simply why the affine relation of friction is written
according to the output torque Γs. This is the
object of the following section.

2.3 A simple meaningful study : friction in a
prismatic joint

Let us consider a slide connection made up of a
parallelepipedic block with the length d slipping
between two plans, as it is drawn in figure 3. The
input force Te (resp. the output Ts) is offset of
a distance a (resp. b) compared to the slide axis
(of center C). The normal efforts N appearing
at the contact points A and B are at the origin
of tangential Coulomb friction forces, T = νN .
The total friction force is worth F = 2T . The
fundamental principle of statics results in F =
2ν (aTe + b Ts)/d.

Let us examine two cases now: if a = 0, then
F = µTs (Case 1, with µ = 2νb/d), and if
b = 0, then F = µTe (Case 2, with µ =
2νa/d). Let us calculate in both cases the front-
to-back transmission efficiency (the input involves
the output, |Te| > |Ts|) and the front-to-rear
transmission efficiency (the output involves the
input, |Te| < |Ts|). In the first case, ηm = 1/(1 +
µ) and ηr = 1 − µ, while it is the opposite in
the second case. Thus, ηm > ηr in the first case
and ηm < ηr in the second case. The efficiencies
measured by the manufacturers of mechanical
components are always in conformity with the first
case, which justifies the choice to write the affine
function of friction according to Γs.

A second justification can be deduced from the
small example above. Indeed, in reality, when
the characteristics of the industrial components
are examined, it is noted on the one hand that
the efficiencies decrease very appreciably at the
same time as Γs, and on the other hand that
ηr is not defined for the values Γs lower than
a level of reversibility. This behavior is taken
into account in our model thanks to the term of
constant friction Fr. Indeed, one then obtains the
following expressions which are in conformity with
the industrial data:
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Fig. 4. Flow diagram of the studied joint

ηm =
1

1 + µ + Fr

Ts

, and ηr = 1− µ− Fr

Ts
. (4)

3. MODELING OF A JOINT OF THE BIPED
ROBOT RABBIT

The biped robot Rabbit consists of two legs pro-
vided with knees joints and a trunk of important
mass connected to the legs by the hip joints. The
robot does not have feet. We will detail in this
paragraph the modeling of the axis of a knee
suspended freely in space. In this case, there is
no contact with the ground and thus no efforts
exerted on the free part of the tibia. The leg of
the Rabbit robot consists of an aluminum body
provided in its end with a wheel placed in an
orthogonal plan with the walk direction (see Ro-
bot à pattes (1999)). The kinematic chain of the
articulation of the knee is made up of a D.C.
motor which actuates via a molded notch belt the
input shaft of an “Harmonic Drive” gearbox. The
dynamic spline of the gear is directly coupled with
the leg of the robot.

The connection pivot between the thigh and the
tibia is carried out by a double bearing integrated
in the Harmonic Drive gearbox. The elements of
transmission described above are represented on
the flow chart of figure 4. When the foot of the
robot is not in contact with the ground and that
only the considered axis is actuated, the articular
couple Γ applied to the leg is given by the equation
(3), in which the term H depends only on the
position q and the first moment of inertia ml of
the leg, that is to say Γ(q, q̇, q̈) = Jc q̈+ml sin(q).
The torque Γs at gearbox output can be written:

Γs = Γ(q, q̇, q̈) + Fc(q̇), (5)
where Fc(q̇) represents the friction torque in the
connection thigh-tibia.

Taking into account the theoretical elements ex-
plained previously, the equations of modeling of
the reducer are given by:

q̇ =
q̇m

N
, Γs =

N Γe

1 + µi sign(Γs q̇)
= αi N Γe,

(6)
where q̇m represents the motor speed, 1

N repre-
sents the gearbox ratio, αi represents the torque
transfer coefficient and Γe represents the gearbox
input torque.



The value of the coefficient αi depends on the
direction of the power transmission in the gear-
box. We have two values to distinguish, one corre-
sponding to the transfer of output from the motor
towards the axis which will be noted α1 and the
other corresponding to the transfer in opposite
direction noted α2.

The dynamic behavior of the driving axis is given
by the equation:

Γm = Jm q̈m + Fm(q̇m) + Γe, (7)

where Γm, q̇m et q̈m respectively represent the
torque, the angular velocity and the angular ac-
celeration of the motor, Jm corresponds to the
inertia of the motor and of the gearbox input axis
and Fm(q̇m) is the torque of the friction forces on
the motor.

Initially and in order to simplify our presentation,
we used a relatively simple friction model. A more
precise modeling is implemented which integrates
non symmetrical terms of friction for the two di-
rections of rotation. We then have the expressions
of the friction torques Fc(q̇) and Fm(q̇m) which
are put in the form:

Fc(q̇) =
Cc1

2
(sign(q̇)+1)+

Cc2

2
(sign(q̇)−1)+fc q̇,

(8)

Fm(q̇m) =
Cm1

2
(sign(q̇m) + 1)

+
Cm2

2
(sign(q̇m)− 1) + fm q̇m, (9)

with Cc1 and Cc2 terms of Coulomb friction in
direct and opposite direction for the connection
of the axis of the leg and Cm1 and Cm2 similar
terms for the motor side.

4. METHOD FOR THE IDENTIFICATION OF
THE ROBOT AXIS

We find in the literature many works on the
identification of the model of a mechanical system.
The linear quadratic methods are recommended
when the model of the system is linear in relation
to the coefficients to identify and that the signal
of excitation is sufficiently informative.

4.1 Identification with least square method

The least square method of identification of which
one thinks initially, requires the possibility for the
equations characterizing the model of the physical
system to be written in a linear way according
to the parameters to identify. In our case, it is
necessary to rewrite the equation (6) in the form:

Γs = αm N Γe, (10)

where αm represents the average transfer coeffi-
cient of the gearbox, the definitions of the other
variables remaining unchanged. The control vari-
able being the motor current Im, the relation
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Fig. 5. Direct identification method

Γm = ke Im is well-known (ke = 0, 32 given by
the manufacturer). The relations (5) and (7) to (9)
give, all calculations made, the following equation:

Γm = Jt q̈m + ft q̇m + Ct sign(q̇m)

+ ∆Ct +
ml

αmN
sin

(qm

N

)
, (11)

with Jt = Jm +
Jc

αmN2
, ft = fm +

fc

αmN2
,

Ct =
Cm1 + Cm2

2
+

Cc1 + Cc2

2αmN

and ∆Ct =
Cm1 − Cm2

2
+

Cc1 − Cc2

2αmN
,

respectively the global inertia, the coefficient of
global viscous friction, the Coulomb friction and
the difference of Coulomb friction brought back on
the driving axis. By applying the traditional least
square method, we obtain the numerical values of
the identifiable coefficients given in table 1. We
will comment on these values thereafter.

Global parameters on the motor side

Jt = 4, 7 10−4 kg.m2 ft = 6, 5 10−3 Nm.s

Ct = 0, 203 Nm ∆Ct = −0, 0025 Nm

Table 1. Identification results by least
squares for a signal with 1 Hz.

4.2 Direct identification method by minimization
of the input error

One can easily note that the model of behavior
obtained starting from the equations (5) to (9) is
nonlinear according to the parameters. It is then
important to know if this model is identifiable (see
Tunali et al. (1987)). The equation (5) explicitly
giving the opposite model of the robot, we define
the function Γ̂m(θ̂) (θ̂ is the vector of parameters)
representing the inverse model of the system. The
error criterion ∆ is defined by the quadratic error
between the motor torque and the function Γ̂m(θ̂)
as shown in the figure 5.

Let us define:

∆ = (Γm − Γ̂m)T (Γm − Γ̂m) (12)

with Γm the measured torque and the torque
Γ̂m obtained by the inverse model according to
measurements qm, q̇m, q̈m and of the parameters.

For two different values θ̂a = (θ1, θ2, α1, α2) and
θ̂b = (θ1,

θ2
2 , 2 α1, 2 α2), we obtain the same values



of the function ∆. The whole of the physical
parameters of the model are thus not identifiable.

The equations (5) to (9) allow to obtain the
equation of the torque Γ̂m:

Γ̂m = ψ Θ̂1 + sign(q̇m)⊗
∣∣∣ψ Θ̂2

∣∣∣ , (13)

with the vector ψ =
[
q̈m q̇m sign(q̇m) 1 sin( qm

N )
]T

and the vectors of parameters to identify Θ̂1 =
[θ1 θ2 θ3 θ4 θ5]

T and Θ̂2 = [θ6 θ7 θ8 θ9 θ10]
T . The

symbol ⊗ represents the inner product of two
vectors and the symbol |V | represents a vector
made up of the absolute values of the elements of
V . The expressions of the parameters according to
the values defined previously are: θ1 = Jm + λ1Jc

N2 ,

θ2 = fm+ λ1fc

N2 , θ3 = Cm1+Cm2
2 + λ1(Cc1+Cc2 )

2N , θ4 =
Cm1−Cm2

2 + λ1(Cc1−Cc2 )

2N , θ5 = λ1ml
N , θ6 = λ2Jc

N2 ,

θ7 = λ2fc

N2 , θ8 = λ2(Cc1+Cc2 )

2N , θ9 = λ2(Cc1−Cc2 )

2N ,
θ10 = λ2ml

N .

The identification of the system then amounts
seeking the vectors of parameters Θ̂1 and Θ̂2

which minimizes the error function ∆ for the
whole of measurement. The gradient of the error
function for each vector of parameters is given by:

∂∆
∂Θ̂1

=−2
∂Γ̂T

m

∂Θ̂1

(Γm − Γ̂m), (14)

∂∆
∂Θ̂2

=−2
∂Γ̂T

m

∂Θ̂2

(Γm − Γ̂m). (15)

The derivatives of the torque Γ̂m are given by:
∂Γ̂T

m

∂Θ̂1

= ψ, (16)

∂Γ̂T
m

∂Θ̂2

= sign(q̇m)⊗ (ψ Θ̂2) ~ ψ = ψ1(Θ̂2),(17)

where the symbol ~ represents the operation
between a vector and a matrix. The result of this
operation is a matrix whose columns are obtained
by the inner product of the vector and of each
column of the matrix.

After calculations, the equation (14) makes to
calculate the vector of the parameters Θ̂1 :

Θ̂1 =
(
ψT ψ

)−1
ψT

[
Γm − sign(q̇m)⊗

∣∣∣ψ Θ̂2

∣∣∣
]
.

(18)
The equation (15) becomes:

ψ1(Θ̂2)
[
Γm − ψΘ̂1 − sign(q̇m)⊗

∣∣∣ψ Θ̂2

∣∣∣
]

= 0.

(19)
By replacing Θ̂1 in (19), one obtains an equation
which cannot be solved in explicit form, but only
numerically.

By using the same data of measurement that in
the paragraph 4.1, we obtain thus the values of
the vector Θ̂2 and by applying the equation (18)
the values of Θ̂1. Tests not described here for lack
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Fig. 6. Comparison between measurement (solid
line) and simulation (dotted) for 1 Hz signal

of place make it possible to determine the values
λ1 and λ2. We can then calculate the values of the
whole of the physical model parameters which are
given in the table 2.

Motor Jm = 3.2 10−4 kgm2 fm = 2.4 10−3 Nms
Cm1 = 0.106 Nm Cm2 = 0.100 Nm

Gearbox α1 = 0.75 α2 = 1.31

Jc = 0.24 kgm2 fc = 6.9 Nms
Leg Cc1 = 4.51 Nm Cc2 = 4.75 Nm

m l = 0.58 kgm

Table 2. Identification results by input
error method for a signal with 1 Hz.

Our experiment on this method enables us to
conclude that it is sensitive to the choice of filters.
The results obtained for the friction and the first
order momentum are not very precise. On the
other hand, the values of inertia are given with
a good precision.

4.3 Method of recursive identification

The method of identification used in this case
is a method known as recursive. This method
first of all consists in transcribing the equations
seen previously in a simulation software. The
measurements taken on the robot are regarded
as entries of the model. Simulation provides the
simulated value of the swing angle of the leg noted
qc. From this signal and the measurement of the
real angle of the leg, we can define a criterion
of ‖q − qc‖ error which will depend only on the
parameters of the model and on the agreement
of the functions of the model with their exact
expressions.

The experimental tests carried out on the Rabbit
robot made it possible to record the evolution
of the angles of the motor and joint axes for an
alternative excitation in torque imposed by the
motor. These measurements are applied in entry
of a simulation program under Matlab-Simulink.
We carry out then a loop of optimization in or-
der to reduce the difference between the simu-
lated and the measured articular angles. This loop



of optimization uses the routine of optimization
under constraint and multivariable fmincon also
available under Matlab. The square form signal is
applied to the control input of the knee axis, which
imposes the current Im. The motor torque is pro-
portional to the value Im according to the relation
Γm = ke Im. The coefficient ke is given by the
manufacturer and is known with precision, thus
it does not need to be identified. Figure 6 shows
the optimum result obtained by simulation with
the model suggested. There is a good agreement
between the two curves. The result of optimization
gives the numerical values indicated in table 3 of
the various coefficients of the model.

Motor Jm = 3.56 10−4 kgm2 fm = 4.0 10−3 Nms
Cm1 = 0.087Nm Cm2 = 0.091 Nm

Gearbox α1 = 0.7432 α2 = 1.408

Jc = 0.206 kgm2 fc = 3.12Nm s
Leg Cc1 = 5.03Nm Cc2 = 5.15 Nm

m l = 0.42 kgm

Table 3. Identification results by recur-
sive method for a signal with 1 Hz.

4.4 Comments on the results

These numerical values of identification can be
compared with those provided by the manufac-
turers (of the motor and the gearbox) or with the
theoretical values calculated by the CAD system
with regard to the mechanical parts of the leg. The
motor is of type Parvex RS420J, and the gearbox
Harmonic Drive of type HFUS-2UH, size 25, ratio
N = 50.

The result obtained for the moment of inertia
Jm is close to the sum “inertia of the rotor
plus inertia of the input shaft of the gearbox”,
which is worth 3.32 10−4 kgm2. The moment of
inertia Jm increased with the moment of inertia
Jc brought back to the motor side JcN

−2 is
worth 4.38 10−4 kgm2, which is comparable with
the globally evaluated moment of inertia Jt. The
coefficient of viscous friction fm increased with
the coefficient fc brought back to the motor side
is worth 5.3 10−3 Nm s, which is rather close
to the total viscous coefficient ft. The term of
constant friction Cm1 increased with Cc1 brought
back to the motor side (Cc1N

−1) is worth 0.188
Nm, which is comparable to the term Ct globally
evaluated. A relatively high part of the power is
dissipated within the gearbox. It is important to
evaluate the relevance of the α1 and α2 terms.
By taking into account the equations (4) and (6),
one obtains a driving efficiency of 0.692 and one
receiving efficiency of 0.607, which is completely
in conformity with the corresponding data of
Harmonic Drive under the average conditions of
the experiment. Lastly, the first moment of the
leg ml is identified with a quasi-identical value to
that calculated in CAD, namely 0.41 kg m.

5. CONCLUSION

This work proposes a method of decomposition of
the friction model in a kinematic chain of a robot
axis in three terms, one constant, the other de-
pending only on the speed of the axis and the last
of the torque transmitted to the axis. The result of
such a modeling makes it possible to differentiate
the friction parameters from the motor axis, the
gearbox and the connection of the output axis.
The identification of these parameters is more
complex, the new model being nonlinear in these
parameters. A method of recursive identification
is used and makes it possible to obtain the whole
of the parameters of the model. The results of
simulation compared with the experimental data
obtained on the robot show a good correlation and
validate the method suggested.
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