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Abstract: A design of the mathematical model of the contribution—defined pension
fund is treated. The design respects the specific character and economical rules
of supplementary pension system in the Czech Republic. The state of the new
mathematical model is partly immeasurable. The immeasurable part of the state
is estimated by the extended Kalman filter. The mathematical model and the
designed estimator are illustrated with real data from a pension fund. Copyright
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1. INTRODUCTION

The purpose of this paper is to present a design
and state estimation of a non—linear mathematical
model of the contribution—defined supplementary
pension fund in the Czech Republic.

Since the pension funds were established, the
mathematical models in the UK, Canada and
the USA have been designed. The pension funds
can be modeled by the actuarial cost methods
(traditional approach) or the dynamical mod-
els (modern approach). The traditional methods
are described in Trowbridge (1952). The modern
methods for benefit—defined pension funds are
presented in Dufrese (1986) and Haberman and
Gerrard (1996) and for contribution—defined pen-
sion funds in Vigna and Haberman (2001) and
Josa-Fombellida and Rincén-Zapatero (2001).

As the Czech supplementary pension system was
established by the law (Ministry of Internal Af-
fairs, 1994 and 1999), it was necessary to provide
mathematical modeling of the pension funds. The

above mentioned methods use stationary state of
pension fund. However, the Czech Republic sup-
plementary pension system is growing. So a new
mathematical model that takes into consideration
the specifics of the Czech’s pension system has to
be designed.

A simplified mathematical model of supplemen-
tary pension fund was introduced in Simandl and
Lesek (2003) where the optimal investment strate-
gies were solved.

This paper is focused on design and utilization of a
pension fund mathematical model that is created
in conformity with the Czech law.

The paper is organized as follows. Section 2 is
devoted to design of a mathematical model of
a contribution—defined pension fund, which is
based on the Czech law (Ministry of Internal
Affairs, 1994 and 1999). Content of Section 3 is
focused on a state estimation by the extended
Kalman filter. In the first part a structure of the
extended Kalman Filter is introduced and in the



second part the extended Kalman filter is used for
state estimation of the pension fund mathemati-
cal model. In Section 4 a numerical example is
presented and a brief summary is done in Section
5.

2. DESIGN OF MATHEMATICAL MODEL
OF PENSION FUND

The design of the mathematical model of the
pension fund is based on knowledge of the Czech
law (Ministry of Internal Affairs, 1994 and 1999)
and economical rules. The main presumptions
for the design of the pension fund mathematical
model are:

e the model is created by the law number
42/1994 Coll. wording in force

e all contributions, benefits and movement of
clients are done at the beginning of each year

e assets of pension fund are evaluated by in-
vestments - an evaluation of assets is assets’
pay-off minus fund costs

According to the presumptions a discrete stochas-
tic non—linear state-space system S is chosen:

St ox(t+1)=f(x(t),ult),t) + w(t) (1)
y(t) =h(x(t),t)+ v(t), (2)

where x(t) is the state vector, f(x(¢),u(t),t) is
known vector non-linear function called the tran-
sition function, u(t) is the input vector, w(t) is
white noise, y(t) is the output vector, h(x(t),t) is
known non-linear function called the measuring
function and v(t) is white noise.

Firstly, it is necessary to design a state vector x(t)
of the pension fund model. The dimension and
definition of state vector are chosen as the minimal
requirement to model the real supplementary pen-
sion fund. The following form of the state vector of
the pension fund mathematical model is supposed:

X(t) = [xl (t)v T2 (t)’ 3 (t)v $4(t)7 L5 (t)v 'Tﬁ(t)]T )
where z1(t) is a ratio of clients who keep in
pension fund at time ¢ + 1 (except new incoming
clients) to number of clients of pension fund at
time ¢ where z1(t) € (0,1), z2(t) is an average
value of all benefits per a client, z3(¢) is an
average value of contribution per client (including
government support), 24(t) is number of all clients
in the pension fund, xz5(t) represents total assets
of the pension fund and zg(t) is a rate of return
of whole pension fund in interval (¢,¢ + 1) where
x6(t) € (—1,00).

The dynamical evolution of the state components
in the mathematical model is based on real eco-
nomical rules of the pension fund. The equations

define existing relations between number of clients
and assets of the pension fund.

z1(t+1) = z1(t) + wi(t) (3)
2a(t + 1) = @(t) + wa(t) (4)
z3(t + 1) =z3(t) + ws(t) (5)
za(t +1) = 21 (t)za(t) + ur(t) (6)
x5(t+ 1) = (1 + x6(t)) [(x3(t) — z2(t)) za(t) +

+ 25(t) + up(t)] (7)
z6(t + 1) = 6(t) + we (1)- (8)

The equations (3),(4), (5) and (8) model an evolu-
tion of z1(t), xa(t), x3(t) and xe(t) as a Wiener’s
process. The states can be modeled hereby be-
cause the states z1(t + 1), zo(t + 1), x3(t + 1),
x6(t+1) depend only on the previous values of the
states 1 (t), z2(t), 3(t), x6(t) and on values of the
respective random variables wy (t), wa(t), ws(t),
wg(t). The random variables wq(t), wa(t), ws(t)
and wg(t) are defined as the random variables with
mean p; and variance U? where i = 1, 2, 3, 6.

The equation (6) represents dynamical develop-
ment of the number of the pension fund clients,
where ug(t) = wug, (t) + ug,(t) is the number of
the clients that join to the pension fund at time
t and uy, (t) is the amount of the new client who
have not contributed yet and ug, (t) is the number
of the clients who have contributed to another
pension fund and have already saved some money.

The equation (7) describes dynamical evolution
of the size of the pension fund assets, where wu,(t)
is the amount which clients bring to the pension
fund from other pension fund in which they have
already saved.

The output equation (2) is designed so that the
states xo(t), x3(t), x4(t) and z5(t) are directly
measurable. Hence, the output equation is linear
and the vector v(t) has the following form: v(t) =
0 for all . Then

y(t) = C-x(1) (9)

where C' is in form:

010000
001000
C= 000100]" (10)

000010

The system equation (1) is described by the equa-
tions (3)—(8) in detail. The output equation (2)
is expanded by the equation (9).

The mathematical model of the pension supple-
mentary fund in the Czech Republic was designed
according to the Czech law (Ministry of Internal
Affairs, 1994 and 1999). This model should respect
all specifics of the Czech pension system.



3. STATE ESTIMATION BY THE
EXTENDED KALMAN FILTER

For prediction of the pension fund it is necessary
to estimate the immeasurable part of the state
vector. As the mathematical model of pension
fund is non-linear we have to use a non-linear
estimator.

During last thirty years a lot of non—linear filters
were designed. They can be divided to two main
groups: to global and local (Sorenson, 1974). The
global filters are characterized by validity of esti-
mates in the form of a probability density function
in whole state space while local filters provide
point estimates only. The list of filters is pre-
sented in Kulhavy (1996) and Séderstrom (1994).
There are three main approaches to design the
global analytical filters for non-linear stochastic
systems. The analytical approach based on the
model linearization and Gaussian sum approxi-
mation of probability density function Sorenson
and Alspach (1971) and Simandl and Krélovec
(2000), the numerical approach to solution of the
Bayesian recursive relations leading to the grid
base filters Bucy and Senne (1971) and Simandl
et al. (2002) and the simulation approach using
the Monte Carlo approximation Liu and Chen
(1998) and Simandl and Soukup (2002). These
approaches generate probability density function
as a result of the estimation. They have heavy
computational demands for complex systems. As
the defined mathematical model of pension fund
results from economical reality and there has been
prior information about variables z1(t) ... xg(t), it
is possible to use a simple non—linear filter. In this
case the extended Kalman filter has been chosen
(Anderson and Moore, 1979).

Application of the extended Kalman filter to
model (3) — (9) is shown in the following part.

Consider the stochastic system

where the vector function f(x(¢),u(t),t) is given
by the equations (3) to (8) and it was defined as

The initial state x(0) and the white noise w; are
supposed to be Gaussian

p(x(0)) = N(x(0) : £'(0),P'(0))  (14)
p(w(t)) = N(w(t) : 0,Q(t)) (15)
and independent for all time instants ¢.

On one hand for the defined system it is easy
to evaluate the approximate filtering probability
density function pa(x(t)|yt) because the output
equation (12) is linear:

N(x(t) : %(t), P(t)) (16)
() + P'(t)C” [CP'(t)CT] .

Ay (t) — Cx'(1)]
P(t)=P'(t) - P'(t)C” [CP'()C”] .
.CP'(t),

pa(x(t)ly")
%(t)

o/
X

where y* 2 [y(0),y(1),...y(®)]*, ¥'(t) is mean
and P’(t) is covariance matrix of the approximate
one step predictive probability density function
pa(x(t)[y*™1), %(t) is mean and P(¢) is covariance
matrix of the approximate filtering probability
density function pa(x(t)|y?).

On the other hand the system equation (11) is
non-linear and it has to be linearized. The Taylor
expansion is used to linearize equation on the
surrounding of the optimal state estimation x(t).

f(x(t), u(t), ) = £(x(1), u(t), 1) + F(x(t), u(t), 1)
(x(t) —x(t))

where
Plo)x() = P o) k() =
100 iy 0 01"
0100  —&a(ds+1) 0
001 0 Palie+1) 0
0002 (1+20)(s—4) 0 07
000 0 (1 + &) 0

000 O (i‘3—£ﬁ2)£i’4+£i’5+up 1
It is possible to evaluate an approximate pre-

diction probability density function for linearized
system equation (11):

pa(x(t+1)[y") = N(x(t + 1) : (18)
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The filter that was just brought out is defined
by the equations (16) and (18) and is called the
extended Kalman Filter.

The random variables are modeled by the Gaus-
sian probability density function, but the values of
the estimated states x1(t) and zg(t) are valid only
within certain ranges. This combination causes
that the values of the estimated states could be
out of theirs ranges. So we have to apply two
holders which keep estimated output values within
theirs boundaries. The first holder keeps value
of the state z1(t) between 0 and 1 because it
represents a ratio of clients, who keep in pension
fund at time ¢+ 1 (except new incoming clients) to
number of clients of pension fund at time ¢. The
second low-pass holder is used for the state z4(t).
It holds that the value of the estimated state x¢g(t)
is higher then —1 because it represents the rates of
return of whole the pension fund in time interval
(t,t+1).

4. NUMERICAL EXAMPLE

In this section a numerical example of an esti-
mation immeasurable part of the state by the
extended Kalman Filter is given.

The estimation was performed for the Military
Open Pension Fund of the Czech Republic. The
data was obtained from official pension fund
sources and from The Association of Pension
Funds of the Czech Republic (APF CR). The
data up to year 2001 were used. The data contain
information about the clients who have supple-
mentary pension insurance according the original
version of law (Ministry of Internal Affairs, 1994
and 1999) but also about the clients who have
supplementary pension insurance according the
amending act valid from the 15* of January 2000.

In this illustration example it is supposed that no-
body comes to pension fund when he contributes
to another pension fund. It means that the value
of the incoming money from the other pension
fund wu,(t) is zero and the numbers of the client
who have contributed to other pension funds
ug, (t) equals to zero. The input data are given in
Table 1. The table contains all information about
the input variable u(t) and the measurable states
xo(t), x3(t), x4(t) and z5(t).

The number of clients y3(¢) and pension fund as-
sets y4(t) are presented in Figures 1 and 2, respec-
tively because these are the main characteristics
of the pension fund.

(X(t), )P(1)FT (x(2), 1) + Q(t)-

Table 1. Input values for state estima-
tion of the mathematical model by the
extended Kalman filter (inputs y;(t),
y2(t) and y4(t) are in thousands of CZK)

Year
1994 1995 1996 1997
y1(t) 0 0.0232 0.3092 1.0378
y2(t) 5.4480 7.8120 7.2072 5.1278
y3(t) 0 95000 226000 236000
ya(t) 135100 111020 2263000 3289100
up, (t) 95000 147150 64240 41920
Year
1998 1999 2000 2001
y1(t) 2.7794 6.7292 10.3200 15.1749
y2(t) 4.7798 7.8984 7.2654 6.9248
y3(t) 226000 217000 313000 331000
ya(t) 4476500 7068400 7625118 8742000
up, (t) 94960 119870 46170 37340
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Fig. 1. Number of the clients in the pension fund
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Fig. 2. The pension fund assets y4(¢) (in thousands

of CZK)

The initial state estimate X, was set for this

numerical example to

’

X (O) = [anl (0)7yQ(O)ﬂy3(0)7y4(0)70]T‘ (19)

The variance of the initial state estimates Py and
variance Q; of the white noise wy were chosen as
diagonal matrix in following form:



P, = diag([1,0.01,0.01,0.01,0.01,1])  (20)
Q: = Q = diag([1, 1000, 1000,0,0,1]), (21)

where diag(c) means a diagonal matrix with vec-
tor c as its diagonal.

The extended Kalman filter was used for estima-
tion of the states x1(t) and w¢(t). Final results
of state estimation by the extended Kalman filter
are given in Table 2. The results are presented for
better orientation in figures of estimated and real
values; Figure 3 for the state z1(¢t) and Figure 4
for the state xg(t).

Table 2. Comparison of real and es-
timated values for the immeasurable
states x1(t) and xg(t)

Year
1994 1995 1996 1997
z1(t) 0 0.8300 0.7600  0.7800
Z1(t) 0 0 1.0000 1.0000
z6(t) 0.1160 0.0945 0.1000  0.1003
Z6(t) 0 0.7218 0.0223 -0.0139
Year
1998 1999 2000 2001
z1(t) 0.5400 0.8900 0.9100  0.8600
Z1(t) 0.9576  0.9602 1.0000 0.9243
z6(t) 0.0970 0.0670 0.0410 0.0425
Ze(t) 0.0052 0.1015 0.0041 0.0311
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Fig. 3. Ratio of clients, who keep in pension fund
at time ¢ + 1 (except new incoming clients)
to number of clients of pension fund at time ¢
x1(t); (x- - -) real value, (o—) estimated value

Results of the numerical example are reviewed for
each estimated state separately because there is
no economical or physical influence between the
state x1(t) and the state xz¢(t).

Firstly, estimation of the zi(t), that describes
an evolution of a ratio between the clients, who
keep in the pension fund at time ¢ + 1 (except
new incoming clients) and clients of the pension
fund at time ¢ is performed. As it can be seen in
Figure 3 and Table 2, the estimated values are
very close to the physical limitation of the state
21(t) which is defined in Section 2 (the value of
x1(t) must be between 0 and 1). The rules for
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Fig. 4. Pension fund assets rates of returns x4(¢);
(%---) real value, (o—) estimated value

reducing the estimates of the extended Kalman
filter must be applied here. It is also necessary
to mention that the real values are very close to
the upper bound of their limitation. Due to these
facts the extended Kalman filter cannot tune itself
quickly enough. So the estimated values and the
real values of the state x1(¢) are shifted for these
input data. The last values of the estimated state
Z1(t) follow the trends of real value of x(t). It
is expected that the filter is close to be tuned-up
and the values of the state &1 (¢) will be estimated
more accurately for greater range of input data.

Figure 4 contains an evolution of real and esti-
mated value of the pension fund rates of returns
x6(t) for contribution—defined pension fund. It
can be seen in Figure 4 and Table 2 that the
estimated state Zg(t) oscillates around the real
values of state z¢(t) with diminishing amplitude.
It is necessary to take into account that input
variables are not stable and we have only eight
measured variables to use. The last values of the
estimated state 4(t) are close to the real values
x6(t). This fact shows that the extended Kalman
filter is able to tune-up itself and yields quality
estimations of immeasurable variables in a few
steps.

Although real values of the variables x1(t) and
x6(t) seem to be close to constant and estima-
tions #;(t) and Zg(t) oscillate around them, it is
necessary to note that the pension fund is still in
process of growth. It is clear from Figure 1 and
Figure 2. The characteristics of real values will
change after the market saturation in the future.
Then the extended Kalman filter will adapt itself
faster than the simple methods using approxima-
tion by the polynomials.

The different behaviour of immeasurable states
Z1(t) and Zg(t) estimated by the extended Kalman
filter lies in their limitations and complexity of the
equations which describe them.



5. CONCLUSION

This paper dealt with design and utilization of the
mathematical model of the contribution—defined
pension fund in the Czech Republic. The new
mathematical model of pension fund has been
derived from the Czech law (Ministry of Internal
Affairs, 1994 and 1999). The technique of mathe-
matical modelling of a pension fund may be useful
even for other countries where pension funds are
going to be launched.

The extended Kalman filter was applied to the
mathematical model of contribution defined pen-
sion fund. The numerical example used the real
data from the pension fund, which participates
in the Czech pension funds market. With re-
spect to the numerical example the results the
extended Kalman filter were acceptable for use in
the state estimation of the pension fund math-
ematical model. The values of the states x1(t)
and z¢(t) were estimated well and the differences
between the estimated and the real value were
caused by the additional holders and the range of
data. The estimated values of the immeasurable
state x1(t) were shifted to real value because the
holder was used to keep the values in their defined
physical limits. Influence of the holder decreased
with number of applied input data. The estimated
values of the second immeasurable state xg(t)
oscillated around the real values. The amplitude
decreased with increased time.

The estimation of the immeasurable states would
require a long history of input data because the
extended Kalman filter had to be tuned-up. The
number of required input data depends on the
complexity of the equations that describe the dy-
namic evolution of the pension fund mathematical
model. The longer history of input data would
yield better results.
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