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Abstract: The paper describes a new approach to the exploration of dynamic models in 
the process of the design of technical systems. The approach combines the traditional 
concept of reachable sets for controlled dynamic  systems with such modern decision 
support tool as interactive (animated) computer visualization of Pareto frontier in decision 
problems. 
Combination of the approximating the reachable sets for a dynamic systems with Pareto 
frontier visualization results in the Moving Pareto Frontier (MPF) technique that helps a 
designer to select a preferred design of a technical system.  Copyright © 2005 IFAC 
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The paper describes a new approach to the 
exploration of dynamic models in the process  
of the design of technical systems. The approach 
combines the traditional concept of reachable sets for 
controlled dynamic  systems (see, for example, 
(Kurzhanski, A.B.,and I. Valyi, 1996)) with such 
modern decision support tool as interactive 
(animated) computer visualization of Pareto frontier 
in decision problems (Lotov and al. 2004). 
Combination of the approximating the reachable sets 
for a dynamic systems with Pareto frontier 
visualization results in the Moving Pareto Frontier 
(MPF) technique that helps a designer to select a 
preferred design of a technical system. The MPF 
technique was introduced in (Brusnikina, N.B., and 
A. V. Lotov, 2004) . 
 
Let us start with a simple example that illustrates the 
idea. We consider the system of three heavy bodies 
that can move on the horizontal plane without 

friction (see Fig. 1). All the bodies are connected 
with springs, while the left-hand body is connected  
by the spring with the wall.  
 

 
 
Fig. 1. The system under study. 
 
The system is controlled by the external force that is 
applied to the right-hand body. The value of the 
external force is restricted from above. If all forces 
(including forces produced by springs) equal zero, 
there are equilibrium positions of the bodies. It is 
assumed that at the initial moment the system is out 
of the equilibrium state. The aim of the control is to 
bring the left-hand body into the vecinity of zero in 
its phase space, where it can be captured. The 
designer has to decide concerning the capacity of the 

     



capture, that is, the maximum values of deviation of 
the left-hand body from its equilibrium position and 
of its velocity at the moment of capturing. 
 
It is assumed that the designer is interested in the 
decreasing the capacity of the capture and time 
required to capture the body, but is not able 
formulate the loss function, which describes the 
losses related to the capacity of the capture and time 
in an integrated form. Therefore, multiple criteria 
design problem must be studied. Since two first 
criteria (maximum distance from the equilibrium 
position of the left-hand body and its maximum 
velocity at the moment of capture) and the third 
criterion (time) are different in their nature, we 
propose to display the dynamics of the Pareto 
frontier for the first two criteria to the designer. This 
information must support his choice of the preferred 
design.  
 
Now let us consider the mathematical formalization 
of the approach. Though the MPF technique was 
introduced in (Brusnikina, N.B., and A. V. Lotov, 
2004)  for non-linear dynamic systems, in this paper 
we restrict to a linear differential equation and 
convex constraints. Therefore, the following 
controlled system of differential equations is studied 
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Let us assume that constraints are imposed on values 
of the control variables 
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It is assumed that the initial state  belongs to a 

given compact convex set  from 
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By )(θΓ  we denote the reachable set for the time-
moment ],0[ T∈θ , that is, the variety of the states, 
which can be reached by the system (1)-(3) precisely 
at a time-moment θ . 
 
Let us consider a multi-criteria decision problem 
with the criterion vector  related to the state  by 
a mapping  

z x
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which maps the states of the system into the linear 
criterion space mR . We assume that the number of 
criteria is three to seven. The set ))(()( θθ Γ= FZ  
that describes criterion vectors, which are feasible at 
the time moment θ , is denoted as the feasible 
criterion set (FCS) for this time-moment. Note that, 
even in the case of a linear dynamic system (1)-(3), 
the mapping (4) can still be non-linear. 

 
It is assumed that, the designer is interested to 
minimize the duration of the process, that is, he 
wants to select a time-moment  as small 
as possible. At the same time, it is assumed that, in 
addition to minimizing the duration, the designer is 
interested in minimization of all coordinates of the 
criterion vector . To be precise, a criterion vector 

 is more preferable than  if 
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optimal (non-dominated) if there does not exist any 
criterion vector )(** θZz ∈  that is better than 

. The variety of Pareto optimal criterion vectors ( 
Pareto frontier of the feasible criterion set 

*z
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denoted by ))(( θZP . Since the feasible criterion set 
)(θZ  depends on time θ , the Pareto frontier 

))(( θZP  depends on time, too. 
 
In the book (Lotov and al. 2004), it is shown how the 
Pareto frontier can be visualized for static models 
with three to seven criteria with the help of the 
Interactive Decision Maps (IDM) technique. In the 
framework of the IDM technique, the Edgeworth-
Pareto Hull (EPH) of the FCS is approximated in 
advance, before the interactive visualization of the 
Pareto frontier can start. In the case of multi-criteria 
minimization problem, the EPH that is defined as 

, where  is the non-negative 

orthant of the criterion space 
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mR . It is important that 

the Pareto frontiers of the sets Z  and *Z  coincide. 
The IDM technique provides an opportunity to 
display the Pareto frontier on-line as frontiers of 
various collections of two-criterion slices of the EPH 
(decision maps). After the exploration of the Pareto 
frontier is completed, the user can identify a 
preferred criterion point goal. The associated 
decision is found then by the computer automatically. 
The IDM technique proved to be effective in both 
linear and non-linear static problems. Moreover, it is 
shown in the book (Lotov and al. 2004) how the 
technique can be applied to study dynamic multi-
criteria problems if time is not a decision criterion. 
Here, we propose to develop the concept of the IDM 
technique for the case of dynamic decision problems 
with a decision criterion that is associated with time. 
This development is based on transformation of the 
IDM technique into the MFP technique. 
 
In the framework of the MPF technique, the 
reachable sets )( ktΓ  are constructed numerically 

for a sufficiently large number  of time moments N

N
Tktk = , where Nk ,...,1,0= . To be precise, the 

sets )( ktΓ  are approximated by polyhedral sets kΓ  

with a sufficient precision. Then, the sets  are 

approximated for all moments . The 
designer can specify a desired combination of two-
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criterion slices of the sets , which are displayed 
in consecutive order. This results in an animated 
movement of the Pareto frontier on the computer 
display. The designer studies the movement of the 
frontier (perhaps, many times) and selects a time-
moment  of the end of the process 
(actually, he stops movement of the frontier at a 
certain moment). Then, the designer has to identify a 
preferred goal point  at the Pareto frontier for the 
selected time-moment. As in the IDM technique 
(Lotov and al. 2004), the associated control , 

 is computed automatically. To implement 
the MPF technique in the form of a numerical 
procedure, a multi-step linear approximation of (1)-
(3) is considered. In the framework of such an 
approximation, the differential equation is substituted 
for a multi-step equation and the compact convex 
sets that describe constraints are approximated by 
polytopes. Approximations  of the reachable sets 

 are constructed using optimal methods for 
polyhedral approximation of convex reachable sets 
described in Chapter 7 of the book (Lotov and al. 
2004). Methods for approximation of the sets  for 

the given sets  for linear and non-linear criteria 
are provided in the same book (Lotov and al. 2004).  
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The MPF technique was applied to the illustrative 
problem described above. We denote by  
the deviations from the equilibrium points for the 
left-hand, the central and the right-hand bodies. Let 

 be the masses of the bodies, and 

 be the resilience coefficients of the 
springs. Then, the dynamics of the system is 
described by the equations 
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The system was studied for the following particular 
values of parameters: 

,2,2,16 321 === ccc

.1,4,2 321 === mmm  

By denoting by  the velocities of the 
bodies, we obtain 
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Let us assume that at the moment  the system 
was in the state  

0=t

2321 === xxx , 0321 === vvv . 
 
In addition to time of capture, two decision criteria 
were considered -- the deviation of the first body  
and its speed in the time-moment of capture.  

1x

 

 
Fig. 2. Positions of attainable values of phase 
variables of the left-hand body for different time-
moments. Part1. 
 

 
Fig. 3. Positions of attainable values of phase 
variables of the left-hand body for different time-
moments. Part2. 
 
The approximations of 6-dimensional reachable sets 
for the system under study were constructed first. 
Then, the related EPH's were approximated, too. 
Since we have got only two criteria (in addition to 
time), we simply display the sequence of the sets 

. The moving Pareto frontier is displayed as the 
frontier of the EPH. Unfortunately, we cannot 
display animation in the paper. For this reason, we 
provide two kinds of alternative pictures. In Figs. 2 
and 3, the projection of the reachable set into the 
phase space of the first body is given. One can see a 
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sequence of projections until , that is, the 
time-moment, at which the point , 

2.53=t
01 =x 01 =v  is 

practically getting attainable. Figs. 2 and 3 give some 
idea about how the animation can look: the set of 
attainable values of  rotates around zero and 
approaches it at . One must note that in 
animation the number of displayed sets is much 
greater, it is about 430. Due to it, animation effect is 
provided. 

11 , vx
2.53=t

 
In this particular case, the designer could use the 
animation of attainable values of , but in 
general animation of the Pareto frontier turns out to 
be more informative. Since its movement is too 
sophisticated to be displayed by a simple static 
picture, we prepared Fig. 4 that contains unions of 

 for several time periods: for 

11 , vx
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, , , , 
. Since every next time period includes 

the previous, such unions expand. 
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Due to it, their frontiers do not intersect, and one can 
easily see how the Pareto frontier approaches the 
goal. This information can help the designer to 
identify preferred time-moment and criterion values. 
The control that brings the system into the identified 
state can be found automatically.  
 

 
Fig. 4. Superimposed Pareto frontiers for several 
time-moments. 
 
Such an animation supports human exploration of the 
criterion tradeoffs. Once again, the visualization of 
the movement of the Pareto frontier is made possible 
by the preliminary approximation of the reachable 
sets for the dynamic system under study.  
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