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Abstract: In this paper, a new correlation analysis based algorithm is proposed for the 
identification of a class of nonlinear systems which can be described by the NARX    
(Nonlinear AutoRegressive with eXogeneous input) model with input nonlinearities. 
Without any assumptions about the structure of an approximating function for the system 
nonlineariy, the algorithm recovers the functional values of the nonlinearity over a 
discrete point set associated with the levels of the applied input and estimates the model 
parameters from the system input output data. An optimal approximating polynomial can 
then be determined from the nonlinear functional values to produce an optimal estimate 
for the system nonlinearity. Simulation studies are included to demonstrate the 
effectiveness of the new method. Copyright © 2005 IFAC 
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1. INTROCTION  

 
The NARX (Nonlinear AutoRegressive with 
eXogeneous input) model, which is a relatively 
general description for dynamic nonlinear systems, 
was proposed by Billings and co-workers (Billings 
and Chen, 1989; Chen and Billings, 1989) and has 
been used to describe the dynamic behaviours of a 
wide range of engineering systems and physical 
processes (Billings and Coca, 2002). In this study 
NARX models which are restricted to nonlinear 
effects in the input only will be considered. A 
considerable range of practical systems can be 
represented by this class of model. The well-known 
Hammerstein model of nonlinear systems, which is 
composed of a static nonlinearity followed by a 
linear dynamic element, is a specific case; The 
Volterra series can also be represented by this model 
(Kotsios, 1997). 
 
Because of the complexity of nonlinear systems, the 
identification of these systems is often addressed 
based on a specific model structure. For example, the 
study of the identification of block oriented nonlinear 
systems such as the Hammerstein and Wiener 
models. The Wiener model is a cascade system with 
a linear dynamic element followed by a static 
nonlinearity, which is just the converse of the 
Hammerstein model. However, in contrast to the 

many results for the Hammerstein and Weiner 
models, as far as we are aware, there is no methods 
which have been introduced specifically for the 
identification of the NARX model with input 
nonlinearities. Although the identification 
approaches developed for the general NARX model 
can be used to address this identification problem, 
restricting the nonlinearities to be in the input only 
offers several advantages.  
 
In this paper, a new algorithm is proposed for the 
identification of the NARX model restricted to 
nonlinearities in the input terms only. The algorithm 
is a correlation analysis based approach and is 
derived by extending the idea proposed by the author 
for the identification of the Hammerstein model 
(Lang, 1990, 1993, 1994, 1997) to the more general 
case. Unlike the identification methods for the 
general NARX model, the new algorithm does not 
require a priori assumptions for the structure of the 
approximating function for the system nonlinearity. 
The algorithm first recovers the functional values of 
the nonlinearity over a discrete point set associated 
with the levels of the applied input, and estimates the 
model parameters directly from the system input 
output data. Then an optimal approximating 
polynomial is determined from the obtained 
nonlinear functional values to produce an optimal 
estimate for the system nonlinearity. A simulation 

     



study is conducted to demonstrate the effectiveness 
of the proposed method. Theoretical analysis of the 
properties of the new algorithm is under study, the 
results will be presented in a future publication. 
 

2. NARX MODEL WITH INPUT 
NONLINEARITIES 

 
The general NARX model is given by 
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Consider the NARX model with input nonlinearities 
given by equation (2). Assume the maximum lags n 
and m for the system output and input are all known 
a priori, { })(ku  is an i.i.d. random process, and 
{ })(kε  is a zero mean noise sequence which is 
independent from the system input .  { })(ku

      (1) 
and was proposed in 1980’s to represent a wide class 
of discrete time nonlinear systems (Billings and 
Chen, 1989; Chen and Billings, 1989). In (1),  
denotes discrete time,  and  are the system 
output and input,  and  are the maximum lags 
for the output and input in the model, 
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represents an i.i.d. sequence, and  is a nonlinear 
function of its arguments. 
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The NARX model with input nonlinearities can be 
described as 
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where  is a nonlinear function of (.)g )( iku − , 
i=0,…,m. Obviously model (2) is a special case of 
model (1), but it can still represent a wide range of 
nonlinear systems including the well-known 
Hammerstein model and the widely applied Volterra 
series, as special cases (Kotsios, 1997). 
 
The identification of model (2) involves determining 
estimates for  and the nonlinear function 
g(.) from the system input and output. This can be 
carried out using the well established approaches for 
the general NARX model (Billings and Coca 2002), 
which expand function g(.) as a polynomial function 
of its arguments, and estimate   and the 
coefficients of the approximating polynomial via a 
LS based method. In the next section an alternative 
approach, based on a new correlation analysis 
algorithm, is developed specially for the 
identification of model (2). Without any assumption 
for the form or structure of the function g(.), the 
algorithm directly determines the estimates of 
parameters  and the values of the function 
g() over an discrete point set on the (m+1)-
dimensional space of the delayed system inputs 

. Then an optimal approximating 
polynomial for the function g(.) is  obtained from the 
functional values. The advantage of the new 
algorithm is that no indirect modelling errors are 
involved when estimating the model parameters and 
functional values. Consequently, estimates of 

 and of an approximating polynomial for 

g(.) can be obtained with theoretically guaranteed 
good properties. 
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3. NEW IDENTIFICATION ALGORITHM 

 
3.1 Derivation of some basic relationships  
 

 
Rewrite (2) as 
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where ( ))(,),()( mkukugkx −= L

))(( ku
, and multiply by 

a manipulated input G  on both sides of (3) to 
yield 
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where G(.) is a known function of u(k) such that 

{ } 0))(( =kuGE . Taking the mathematical 
expectation on both sides of (4) yields 
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where  
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Taking m  in (5) as 2,3,…, M  with 1++> mnM  
yields 1−M  equations which can be written in a 
matrix form as 
 

θψ Φ=      (7) 
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where 
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with denoting a m dimensional unit matrix 
and   

[ mmI × ]
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representing a ( ) mmM ×−− 1  dimensional zero 
matrix, and 
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From (7) it is known that the model parameters 

 can be expressed in terms of Φ  and naa ,,1 L ψ as 
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      (8) 
Equation (8) is the basic relationship based on which 
the estimates of parameters  can be 
determined using the system input output data. 
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In order to derive a basic relationship which can be 
used to determine the functional values of g(.) from 
the system input output data, rewrite (2) as 
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where 
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and  is the impulse response of the 

discrete time system transfer function  

∞= ,...,1, ihi

)( 11 −− qAq .  
 
Replacing  in (9) by k mk +  and taking the 
conditional expectation with respect to 
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on both sides of the equation gives 
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Taking m  in (10) as 
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respectively yields  equations. After some 
manipulations, these equations can be written in a 
matrix form as below. 

12 +m
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From (11) 
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and from (16), { })()( kUkxE , the (m+1)th element  
of  vector UxE  can be expressed as 
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Given a specific  
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It is straightforward that 
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so that (17) gives the value of  the function g(.) at the 
point { }1,,1 += muuU L  in the (m+1)-dimensional 
space of the delayed system inputs 
{ })(, mku),(ku −L . Therefore equation (17) 
provides the basic relationship needed to determine 
estimates of the values of  the function g(). 
 

     



3.2 Identification algorithm 
 
From equations (8) and (17), a new algorithm for the 
identification of the NARX model with input 
nonlinearity given by equation (2) is proposed as 
follows. 
 
(1)  Apply a sequence of i.i.d. random variables with  

probability distribution 
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as  in the experiment performed for the 
identification. , 

{ )(ku }
iD Ni ,,1 L=  are calculated 

from  the formula 
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where  is the interval where the system 
input varies in practice.  

[ ba, ]

 
This specific choice of input sequence follows the 
idea in (Lang, 1997). The objective is to 
determine a best Tchebycheff approximating 
polynomial for the function g(.) from the values 
of this function over the discrete point set   
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on the (m+1)-dimensional space of the delayed 
system inputs { } .  )(,),( mkuku −L

 
(2) From (8), calculate the estimates of parameters 

 as naa ,,1 L
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where  and Φ̂ ψ̂  are the estimates  of  Φ  and 

ψ .  and Φ̂ ψ̂  can be obtained by replacing  
 in these matrices with the estimate )(τ)(uφ yG
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where N  is the number of observations for the 
identification. 

 
(3) From (17), evaluate the estimates of the values of 

g( . ) over the discrete point set  as below ∑
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where ∑∈D

2H
,  and  are the estimates of 

 and , and can be obtained directly from 
the  estimates  of  a ,  
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and 
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(4) Determine a H degree best Tchebycheff 

approximating polynomial )),(( θkUPH  for the  
function ))(( kUg  by solving the following  
optimisation problem 
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where θ  is a vector composed of the  coefficients  
of the approximating polynomial, and NH < . 
Denote the solution to (26) as . Then  *θ

)),( *θUPH (k  is the estimate of the nonlinear 
function g( . ) determined  by the algorithm . 
 

This algorithm is a natural extension of the  
identification method for the Hammerstein model 
proposed  by the author (Lang, 1997) to the  NARX 
model with  input nonlinearities.  Following the same 
idea of theoretical analysis in the previous paper, the 
convergence issues of the new algorithm are under 
investigation. The results will be presented in a later 
publication. 
 

4. SIMULATION STUDY 
 
Consider a specific NARX model with input 
nonlinearities  such that 
 

)())1(),((
)(

)(
1

1
kkukug

qA
q

ky η+−=
−

−

 

 
where ,  11 8.01)( −− −= qqA

)1())1(24.0)(2.1())1(),(( −−+=− kukukukukug  
 

     



and { )(k }η  is a noise with zero mean and standard 
deviation  0.01.  
 
Assume that [a,b]=[-1,1], and take N=10, H=8, and 

2000=N . Apply the proposed algorithm to the 
identification of this system with the function 
G(u(k)) chosen as 
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The estimation result for was  )( 1−qA

 
11 78.01)(ˆ −− −= qqA  

 
which, clearly , is very close to the true result. 
 
 
 An 8th order approximating polynomial for the 
nonlinear function g(u(k),u(k-1)) was determined. 
Figure 1 shows the approximating polynomial over 
the region of u  and [ 1,1)( −∈k ] [ ]1,1)1( −∈−ku .  
Figure 2 shows the real g(u(k),u(k-1)) over this 
region. A comparison of Figure 1 and Figure 2 
indicates  that a very good estimation result for the 
nonlinear function  has be obtained. Therefore the 
effectiveness of the new algorithm is verified by the 
simulation  example. 
 
 
 

 
Figure 1 The estimate for the system nonlinearity 
 
 
 

 
Figure 2 The real system nonlinearity 
 

5. CONCLUSIONS 
 

In the present study, a new algorithm has been 
developed for the identification of the NARX model 
with input nonlinearities. The algorithm is a 
correlation analysis based method and a natural 
extension of the author’s previous work on the 
identification of the Hammerstein model (Lang, 
1997) to a more general case. The simulation study 
demonstrates the effectiveness of the algorithm. 
Theoretical analysis of the properties of the 
algorithm will be discussed in a future publication. 
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