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Abstract: The problem of detecting an anomaly from a limited number of noisy
tomographic projections is addressed from the statistical point of view. An
unknown two (or three)-dimensional scene is composed of a background, considered
as a nuisance parameter, with a possibly hidden anomaly. A parametric approach
is proposed to reduce the lack of a priori information and an optimal test is
designed. To decide between two hypotheses (absence or presence of the anomaly),
the statistical test eliminates the background, which can hide the anomaly. New
results on anomaly detectability are proposed and discussed in this paper. It is
shown that a size-limited anomaly is better detectable with several projections.
Copyright c©2005 IFAC.
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1. INTRODUCTION

Computerized tomography (CT) is a technique
for examining the internal structure of an
object, which is very useful in quantitative
non-destructive testing, object recognition and
(biomedical) system monitoring, among others. In
certain applications like baggage X-ray scanning
or welding defects detection, it is desirable to
detect an anomaly/target possibly hidden into an
unknown deterministic background from a very
limited number of noisy tomographic projections.
A key issue of such a detection problem is to state
the significance of the observed deviation due to
the anomaly/target with respect to the unknown
background considered as a nuisance parameter.
An optimal statistical invariant test is proposed to
detect an anomaly/target. Because the unknown
background can hide the anomaly, a very spe-
cial attention is paid to establish the problem
of anomaly detectability. It appears that several
projections can increase the detectability of a size-

limited anomaly. The paper is organized as fol-
lows. The anomaly detection problem is stated
in Section 2. Next, an optimal decision rule is
designed for detecting the anomaly in Section 3.
Finally, the detectability of anomalies is studied
in Section 4.

2. PROBLEM STATEMENT

A more detailed description of the problem can be
found in (Fillatre and Nikiforov, 2003).

2.1 Description of the imaging system

Let us assume the imaged object (or the original
scene) s(x, y) is a two-dimensional (2D) real func-
tion in the x-y coordinate system (the extension
to the three-dimensional case is straightforward),
where s(x, y) has a compact support D ⊂ R2. This
situation is depicted in Fig. 1. In CT, the function



s represents the X-ray attenuation coefficient of
the studied object, i.e. its physical property to
absorb an X-ray flux. It is assumed that the ob-
ject s is a real-valued square-integrable function :
s ∈ L2(D). The line integral of s along the ray
L(t, ω) : x cosω+y sinω = t, with −1 ≤ t ≤ 1 and
0 ≤ ω ≤ π, is the 2D function, denoted as Ps(t, ω),
called the Radon transform of s (Natterer, 1986),
given by :

Ps(t, ω) =

∫ b(t,ω)

a(t,ω)

s(l)dl,

where s(l) = s(t cosω−l sinω, t sinω+l cosω) and
scalars a(t, ω) and b(t, ω) are defined by both the
geometry of the original scene and the geometry
of the acquisition system (see Fig. 1). In CT,
projections are sampled along a linear numerical
detector with n points of sampling whose abscissas
belong to the set τ = {t1, t2, . . . , tn}. This leads to
the discrete parallel-beam line integral projection,
Rω,τ : L2(D) 7→ Rn, of the scene s taken at the
view angle ω for the set of sampling points τ :

Rω,τ (s) = (Ps(t1, ω), . . . , Ps(tn, ω))
T
. (1)
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Fig. 1. Geometry of a 2D object imaged with a
tomographic system.

2.2 Parametric background model

The background corresponds to the original scene
without any anomaly. Sometimes such a back-
ground is assumed to be a known function or
a zero-mean Gaussian random field (Frakt et

al., 1998). But, in general, such an assumption
is not verified and the background must be con-
sidered as an unknown deterministic function (see
for example (Kazantsev et al., 2002)), which will
be called nuisance parameter in the rest of the
paper. It is assumed that h ∈ L2(D). To model

the background, a parametric point of view is
taken up. In particular, a linearly parameterized
approximation of the background h is used in the
paper :

h(x, y) ≈ hµ(x, y) =

m
∑

k=1

µkhk(x, y), ∀(x, y) ∈ D,

where {h1, . . . , hm} is a known family of basic
functions in L2(D) and µ = (µ1, . . . , µm)T is
a real-valued vector of unknown parameters. A
discussion about advantages and disadvantages
to use such a parametrization can be found
in (Fillatre and Nikiforov, 2003). Certainly, the
choice of basic functions {h1, . . . , hm} is crucially
important and it is assumed that the error of ap-
proximation is negligible. For example, to model
a background with low frequencies variations, it is
possible to use a polynomial background defined
by :

hµ(x, y) =
∑

k=(i,j)∈Tm

µk x
iyj , (2)

where Tm = {(i, j) ∈ N × N | 0 ≤ i ≤ m, 0 ≤
j ≤ m − i} and m is the maximum order of the
polynomial function.

2.3 Anomaly model

The goal is to detect any significant deviations
from the background. Let us define the function
(x, y) 7→ fg,µ(x, y) ∈ L2(D) representing a local
variation of the attenuation coefficient in the
original scene due to the presence of the anomaly :

fg,µ(x, y) =

{

g(x, y)− hµ(x, y) if (x, y) ∈ d
0 if (x, y) ∈ D \ d

,

where (x, y) 7→ g(x, y), (x, y) ∈ d, is the anomaly
attenuation coefficient and d ( D. Practically, the
quantity fg,µ represents a contrast between the
background hµ and the true anomaly g.

2.4 Measurement model

Two situations are possible : H0 = {there is no
anomaly} and H1 = {there is an anomaly}. It
follows that :

s(x, y)=

{

hµ(x, y) under H0

fg,µ(x, y) + hµ(x, y) under H1
. (3)

Putting together equations (1) and (3), we obtain
the following measurement model for a particular
view angle ω :

Yω =

{

Hωµ+ ξ under H0

θω + Hωµ+ ξ under H1
, (4)

where θω = Rω,τ (fg,µ), Hω = (H1
ω, . . . ,H

m
ω )

with Hk
ω = Rω,τ (hk) for k = 1, . . . ,m and

ξ ∼ N (0n,1, σ
2In) corresponds to errors of mea-

surement (In is the unit matrix of order n and



0n,m is the n ×m matrix whose all elements are
zero). It is assumed that m < n and σ > 0 is
known. If P projections are available, the vectors
Yω1,...,ωP

, θω1,...,ωP
and the matrix Hω1,...,ωP

can
be easily designed from “elementary” components
Yωi

, θωi
and Hωi

by concatenation. In the rest
of the paper, the subscript ω will be omitted to
simplify the notations except if it is necessary to
avoid misinterpretations.

3. DETECTION OF AN ANOMALY

3.1 Problem of detection

To detect a possible anomaly, it is natural to
consider the following hypotheses testing problem
between the null hypothesis :

H0={Y ∼ N (Hµ, σ2In), µ∈Rm} (5)

and the alternative one :

H1={Y∼N (θ + Hµ, σ2In), θ /∈R (H) , µ∈Rm}
(6)

where R (H) denotes the linear space spanned
by the columns of H, while considering µ as a
nuisance parameter. Because R (H) is the nui-
sance parameter space, it is natural to assume
that θ /∈ R (H) under H1 : the anomaly must not
coincide with the background.

3.2 Testing between two composite hypotheses

The quality of a statistical test δ : Rn 7→
{H0,H1} is defined with the probability of false
alarm and the power of the test (Lehman, 1986).
Let us consider the class of tests Kα = {δ :
supθ∈R(H) Prθ(δ = H1) ≤ α} where the proba-
bility Prθ stands for the vector of observations Y

being generated by the distribution N (θ, σ2In).
The power function βδ(θ) is defined with the prob-
ability of detection : βδ(θ) = Prθ(δ = H1). The
hypotheses testing problem (5)-(6) presents two
main difficulties : (i) the hypotheses H0 and H1

are composite (a hypothesis is composite when it
does not define a unique distribution of probabil-
ity for the vector of observations) and (ii) there
is an unknown nuisance parameter µ. There is no
general way to design a test between two compos-
ite hypotheses (especially with nuisance param-
eters) (Lehman, 1986). An important particular
case of the composite hypotheses testing problem
was proposed by Wald. His idea is to impose an
additional constraint on the class of considered
tests, namely, a constant power function βδ(θ)
over a family of surfaces defined on the parameter
space Rn (see details in (Wald, 1943)) The reasons
which justify such an approach in the case of
anomaly detection are discussed in (Fillatre and
Nikiforov, 2003).

Definition 1. (UBCP test (Wald, 1943)). A test
δ∗ ∈ Kα is said to have uniformly best con-
stant power (UBCP) on the family of surfaces
S = {Sc ; c ≥ 0} defined over Rn, if the following
conditions are fulfilled :

(1) for any pair of points θ′ and θ′′ which lie on
the same surface Sc ∈ S, βδ∗(θ

′) = βδ∗(θ
′′) ;

(2) for another test δ ∈ Kα, which satisfies the
previous condition, we have βδ∗(θ) ≥ βδ(θ)
for all θ ∈ Sc and all surface Sc.

It is worth to note that the choice of the family
of surfaces is naturally imposed by the statistical
nature of the studied problem.

3.3 Optimal test

Consider now the hypotheses testing problem (5)-
(6), given the measurement model (4). Let be
the decision function Λ(Y) = 1

σ2 Y
TP⊥

H
Y and

S = {Sc : 1
σ2 θ

TP⊥
H
θ = c2, c ≥ 0} where

P⊥
H

= In−H(HTH)−HT is the projection matrix
on the left null space of the matrix H and A− is
a generalized inverse of A.

Theorem 1. (UBCP test). Let α ∈ ]0, 1[ and δ∗ be
defined by :

δ∗(Y) =

{

H0 if Λ(Y) < λα
H1 else

, (7)

where the threshold λα is chosen to satisfy the
false alarm bound α : Pr0n,1

(Λ(Y) ≥ λα) = α.
Then, the test δ∗ is UBCP in the class Kα over
the family of surfaces S.

The statistics Λ is distributed according to the
χ2 law with n − q degrees of freedom where
q = rank (H). This law is central under H0 and
noncentral under H1 with a parameter of non-
centrality equal to c2 = 1

σ2 θ
TP⊥

H
θ. An illustration

of the theorem 1 is provided by the Fig. 2. Anoma-
lies are assumed to belong to the space R3 and
the nuisance parameter is scalar (rank (H) = 1).
It is straightforward to show that each surface Sc

is a cylinder whose the axis of revolution coin-
cides with the straight line oriented by H and
passing through the origin O. The radius of the
cylinder Sc is σc. The parity space is the plane
orthogonal to H. It can be interpreted like an
“informative space” : if the anomaly moves in
a direction parallel to this space, the power of
detection changes. At the opposite, the axis of
revolution of the surface can be interpreted like a
“slippery space” : the anomaly can “slide” parallel
to this space without changing its probability to
be detected. In fact, the test δ∗ is invariant with
respect to the group of translations Y 7→ Y+Hµ,
µ ∈ Rm.
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Fig. 2. An illustration of the parameter space in
the 3D case with rank (H) = 1.

4. DETECTABILITY OF SIZE-LIMITED
ANOMALIES

The test δ∗ can detect an anomaly by com-
pletely eliminating the unknown background. Ob-
viously, the rejection of the background can dam-
age the anomaly in the projection and the ques-
tion which must be asked concerns the detectabil-
ity of anomalies, that is to say the ability of the de-
cision function to keep a trace of the anomaly after
the rejection of the background. In this section,
some definitions and results about detectability
are given.

4.1 Motivation
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Fig. 3. An original scene composed of a polynomial
background with a large anomaly (full line)
or with a short anomaly (dotted line).

To motivate the analysis of the detectability of
anomalies, let us consider the detection of an
anomaly into a polynomial background :

hµ(x, y) = 1− 2x− y + 0.1x y − x2 + y2,

with −10 cm ≤ x, y ≤ 10 cm. The linear detector
is composed of n = 10 sensors regularly spaced
(see Fig. 3). It is assumed that measures are
“ideal” (no noise). Two different anomalies are
considered, a large one (Fig. 3, anomaly with a
full line) and a short one (Fig. 3, hatched anomaly
with a dotted line), whose the projections, taken
at the view angle ω1 = 50◦, differ only for the 6-th
sensor (Fig. 4.(a)). On its support of definition,
the short anomaly perfectly coincides with the
large one and they have the same constant at-
tenuation coefficient. At the naked eye, it appears
that the two projections are quite similar. The
Fig. 4.(b) presents the vector Z = P⊥

H
Y after the

elimination of the background. Clearly, the large
anomaly is completely eliminated by the rejection
process whereas the shorter is still visible. This
elementary example shows that anomalies can be
seriously damaged by the decision process and it
is necessary to identify anomalies which may be
“erased”.

4.2 Detectability criterion

First, definitions and results are proposed when
only one projection is available. Next, results are
extended to several projections.

4.2.1. One projection case : It is natural to
define the detectability of an anomaly as fol-
lows (Basseville and Nikiforov, 1993).

Definition 2. (detectability). An anomaly θ 6=
0 ∈ Rn is detectable if and only if :

inf
ν∈Rm, µ∈Rm

%(Hν, θ + Hµ) > 0,

where %(θ, θ′) is the Kullback-Leibler Information
(KLI) between two distributions of probability
parameterized by vectors θ and θ′.

In other words, a fixed anomaly θ is detectable
with respect to the background H if it is impos-
sible to nullify the KLI between H0 and H1 by
a simple variation of the nuisance parameter µ.
Considering the test δ∗ (7), its is straightforward
to prove that this definition is equivalent to the
following one.

Corollary 1. An anomaly θ 6= 0 ∈ Rn is de-
tectable if and only if P⊥

H
θ 6= 0.

Hence, if the anomaly belongs to the null space
of the matrix P⊥

H
, it is completely eliminated by

the rejection of the background : the test δ∗ (7)
becomes to be “blind” to the anomaly. In the
general case θ ∈ Rn, it always exists anomalies
that are not detectable. A natural restriction
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Fig. 4. Difference of detectability between two anomalies : (a) projections Y at 50◦ of the two possible
scenes presented on Fig. 3 and (b) vectors Z = P⊥

H
Y calculated from (a) for the two possible

anomalies.

on the anomaly is to bound the number of its
elements which are not zero : this is a size-

limited anomaly. Let us note θ = (θ1, . . . , θn)
T
,

supp (θ) = {i | 1 ≤ i ≤ n | θi 6= 0} the set of
indices of θ whose associated elements are not
zero and card (θ) = card (supp (θ)) the number
of elements of the vector θ which are different
from zero. For example, if θ = (0 1 4 7 0)

T
, then

supp (θ) = {2, 3, 4} and card (θ) = 3.

Definition 3. (k-detectability). Anomalies of size
k are detectable, or k-detectable, if and only if all
anomalies θ such that card (θ) ≤ k are detectable.

Let Jk
n = {I | I ⊂ {1, . . . , n}, card (I) = k} the

set of all possible subsets of positive integers be-
tween 1 and n which have exactly k elements
and HI the sub-matrix of H obtained from H

by eliminating the rows i1,. . . ,ik such that I =
{i1, . . . , ik}. A brief study on the linearly depen-
dency of the rows of H leads to the following
lemma :

Lemma 1. Anomalies are k-detectable if and only
if rank (HI) = rank (H) for all I ∈ Jk

n .

A direct deduction from lemma 1 shows that
anomalies are never k-detectable for n − q <
k ≤ n. Hence, the maximum size of detectable
anomalies is n − q but this maximum size is not
always reached : it depends on the redundance
which exists between the rows of H.

4.2.2. Several projections case : It is assumed
now that H = Hω1,...,ωP

and all matrices Hωi

have the same rank q. Let us note ki the maximum
value for which anomalies are ki-detectable for the

view angle ωi. The lemma 1 can be generalized as
follows.

Lemma 2. The maximum size k1,...,P of de-
tectable anomalies θω1,...,ωP

verifies the inequal-
ity :

k1,...,P ≥ P (1 + min
1≤i≤n

ki)− 1.

To illustrate the lemma 2, projections of the scene
presented on Fig. 3 are taken at two different
view angles ω1 = 50◦ and ω2 = 140◦. The two
projections are then concatenated to obtain a
whole projection with n = 20 measures. Such a
whole projection is taken for the scene with the
large anomaly and the short one (see Fig 5.(a)).
The two projections are identical except for the
6-th and 16-th sensors. The background is elim-
inated by the rejection process and results are
visible on Fig. 5.(b). The large anomaly which
was undetectable with only one projection is now
detectable.

4.3 Application : detection of anomalies into a

polynomial background

Let us consider the general polynomial back-
ground (2). Due to the discrete Radon transform
(1), the content of H is directly related to the
shape of the support D of the original scene via
the boundaries a(t, ω) and b(t, ω). Hence, to study
the structure of H, it is necessary to precise the
role of its support of definition D. Two kinds of
boundaries for D are considered : an unspecified
boundary and a rectangular boundary. For the
unspecified boundary, the shape of D may be very
complicated (Fig. 1) and no general results about
detectability can be proposed for the moment.
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Fig. 5. Difference of detectability between two anomalies for two view angles ω1 = 50◦ and ω2 = 140◦ :
(a) projections Y = Yω1,ω2

of the two possible scenes presented on Fig. 3 and (b) vectors Z = P⊥
H

Y

calculated from (a) for the two possible anomalies.

At the opposite, a rectangular boundary corre-
sponds to a domain such that a(t, ω) = a(ω) and
b(t, ω) = b(ω). Such a boundary can be found in
medical applications like chest X-ray examination
and breast imaging.

To study the detectability of anomalies of size
k for a rectangular background, the lemma 1
needs to compute the rank of Ck

n = n!
k!(n−k)!

matrices, which is computable infeasible when
k and n are large enough. However, it can be
shown that H = V(τ)U where H is a n ×
((m+ 1)(m+ 2)/2) matrix with rank (H) = m+
1, U is an upper triangular matrix of size (m +
1) × ((m+ 1)(m+ 2)/2) with the constant rank

m+1 and V(τ) = (v1, . . . ,vn)
T
is a Vandermonde

matrix of size n × (m + 1) such that vi =

(1, ti, t
2
i , . . . , t

m
i )

T
. Due to this factorization of the

matrix H and elementary algebra, the following
lemma follows :

Lemma 3. Assume the family τ of sampling
points verify ti 6= tj for all (ti, tj) ∈ τ × τ . For
a polynomial background with a rectangular sup-
port, anomalies are (n−m+1)-detectable wherem
is the maximum degree of polynomial functions.

Hence, when the background is a polynomial func-
tion, the maximum size of detectability is reached.
This reasoning can be apply to other kinds of ge-
ometrical configurations of the acquisition system
with minor changes.

5. CONCLUSION

The problem of anomaly detection from a few
noisy tomographic projections has been consid-
ered as a composite hypotheses testing problem.

The unknown background is assumed to be lin-
early parameterized and is considered as a nui-
sance parameter. An UBCP invariant statisti-
cal test has been proposed. New results on the
anomaly detectability constitutes the main contri-
bution of the paper. It appears that an increasing
number of projections improves the detectability
of a size-limited anomaly. The detection and de-
tectability of an anomaly into a non-linear back-
ground will be studied in future works.
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