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Abstract: In this paper a temperature model for an LD-KG-converter is presented. 
Especially the classification of the variables into groups is discussed. In the steel plant 
there was a need to develop models for predicting the temperature at the end of the 
blow, using the dropping sensor measurement. Large databases from the steel plant 
were used in modelling. The expert knowledge from the personnel in the steel plant was 
utilised during the project. In off-line test runs 75 – 80 % of the blows were predicted 
within the target window, ±10°C. The developed temperature model is in the use on the 
three 120 tonnes LD-KG-converters in Ruukki Production, Raahe Steel Works. 
Copyright © 2005 IFAC  
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1. INTRODUCTION 
 
The control of steel making converters can be based 
on different static or/and dynamic models. In the 
static models parameters (for example the amount of 
the charge materials and blowing practice) are chosen 
in advance using material and energy balances. The 
static models can be corrected or adjusted during the 
blow with the help of dynamic models so that for 
example the target carbon content and temperature of 
steel are achieved as exactly as possible. The 
dynamic model uses real time process measurements 
from the converter, for example the off-gas 
temperature and the temperature, level, carbon and 
oxygen contents of the molten steel, to adjust the 
static model. These static and dynamic models are 
based on the exact information of raw materials and 
they work best if the successive blows are repeated as 
similarly as possible. There are, however, several 
error sources that make the control of the steel 
converter challenging. The quantity and quality of 
the scrap is difficult to define. Also for example the 
slag from the hot metal mixer and different types of 

dust- and splash losses cause unpredictable errors. 
Because of these random errors both static and 
dynamic models must be adaptable. A lot of statistics 
and data are needed to maintain these models. 
 
Four dynamic control systems for converters used in 
steel making were found in the literature. MEFCON 
(MEFOSNews, 2000), the off-gas analysis-based 
system for prediction of metal component 
concentrations and temperature has been used for the 
two LBE converters at SSAB Tunnplåt AB in Luleå. 
In DYNACON (VAI Technology News, 1999) the 
calculation principle is based on the reaction kinetics 
between steel and slag components, the trend 
behaviour prediction of the off-gas composition in 
the last minutes of blowing and on heat and material 
balances. BloCon (Grethe, et al., 1996) is a system 
for dynamic control developed by Mannesmann 
Demag. Many different materials can be taken into 
account in calculations, but the system has to be 
tuned into the parameters of any converter on which 
it is implemented. VAI-CON Temp (Schwelberger, 
et al., 1999) is used to measure the temperature of the 



melt in an AOD-converter through a submerged 
tuyere. 
 
In this paper the data classification in temperature 
modelling of LD-KG –converter is presented. The 
temperature model was developed in the Control 
Engineering Laboratory of the University of Oulu in 
co-operation with the personnel of Rautaruukki Oyj, 
Ruukki Production, Raahe Steel Works. TEKES (the 
National Technology Agency) and Rautaruukki Oyj 
financed the project. Rautaruukki Oyj is the largest 
steel company in the Scandinavia and the leading 
producer of flat rolled products in the region. Raahe 
Steel Works produces rolled plate, sheet and coil, at 
an annual production rate of 2.8 million tonnes of 
slabs.  
 
 

2. PROCESS DESCRIPTION 
 
2.1 Steel Converter Process (Heikkinen et al, 1999) 
 
The task of the steel converter is to lower carbon 
content (about 4.5%) of hot metal to target carbon 
content of steel (about 0.05%). Other tasks are to heat 
the melt enough for further processing, to remove 
impurities (for example sulphur and phosporus) and 
to melt the charged scrap. Blowing pure oxygen into 
hot metal decarburizes the melt. Oxygen reacts with 
carbon generating mainly carbon monoxide. LD-KG-
converter (Linz-Donawiz Kawasaki Gas) (Fig 1) is a 
combined blowing BOF-converter with inert gas 
stirring, which is achieved through multi-hole nozzle 
bricks in the bottom. Stirring is used to keep the melt 
homogeneous and to lower the oxygen level in 
relation to carbon content at the end blow. 
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Fig. 1. LD-KG-converter. 
 
The raw materials of the converter process are hot 
metal coming from the blast furnace, oxygen blown 
through the lance, inert gas blown from the bottom, 
steel scrap, slag formers and fluxes. 
 
Normal amount of scrap is about 15 - 20 % of the 
charge. Besides being important raw material, scrap 
can be used to control the temperature of the melt at 
the end of the blow. 
 
The slag is very important for the converter process. 
The slag former (typically CaO) is needed to form 

slag quickly on the surface of molten iron. Slag 
collects impurities coming from hot metal and scrap. 
At the end of the blow the slag consists of 
components oxidized during blowing (for example 
SiO2, MnO, P2O5), oxides coming from scrap (for 
example CaO, FeO, Al2O3, MgO), slag formers, 
fluxes and oxides dissolved from lining.  
 
 
2.2 Automated Drop in Sensor System (Laine, 1998) 
 
Raahe Steel Works has installed the Automated Drop 
In Sensor System (ADSS) on all three converters. 
The ADSS comprises three fundamental parts: 
expendable sensors, instrumentation for signal 
interpretation and display, and an automatic 
manipulator to drop the sensors into the vessel during 
and/or after the oxygen blow cycle. The manipulator 
and sensors are designed to obtain fast and reliable 
measurements of bath temperature and oxygen 
activity to provide the process operator with control 
data. During the blow, measurements can be obtained 
as late as 30 seconds before the programmed 
endpoint of the heat. The ADSS enables automated 
measurements to be made from the operating 
console. 
 

3. TEMPERATURE MODEL 
 
3.1 Basic structure of temperature model 
 
The aim was to keep the temperature model as simple 
as possible, because the calculation had to be kept to 
a minimum. The alternatives were a linear model, in 
which the slope changes during the blow, or a linear 
model, where the slope is defined based only on the 
initial values of the blow. Because the time available 
to calculate the change in temperature is short, it was 
decided to search for the constant slope, defined from 
the initial values of the blow. The calculation was 
easier to carry out and it was assumed to provide as 
good results as calculations using the changing slope. 
Before this model development there was a constant 
value in use: 0.54°C per second is added to the 
temperature measured with the dropping sensor. 
 
The calculation of the slope is carried out according 
to the following equation: 
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where Tf is the measured end temperature, Ts is the 
temperature of the dropping sensor, tb is total 
duration of the blow and ts is the blowing time 
elapsed when the dropping sensor is used. 
 
 
 
 
 



3.2 Data used in modelling 
 
The data, process measurements and analyses, were 
collected into the database from the plant automation 
system, information being collected from May –00 to 
September –02. In total, thirty-six measurements 
were collected from over fifty one thousand blows. 
The validation of the measurements was carried out 
in co-operation with the steel plant personnel. 
 
From the following figure (Fig. 2) can be seen that 
data has large distribution and it needs to be well pre-
processed before being used in modelling. 
 

 
Fig. 2. Distribution of temperature slope in data. 
 
 
3.3 Data Classification into groups 
 
The data pre-processing and preliminary modelling 
are reported in Ruuska et al, 2003. Theory about 
variable selection and classification can be found 
from several handbooks, for example about variable 
selection in Weiss, Indurkhya, 1998, and about 
classification in Michie, 1994. However in this case 
variable selection and classification is done in co-
operation with the steel plant personnel. 
 
Preliminary models were formed as follows: first all 
blows not having all the required measurements were 
omitted  kk-ka –model; then blows that weren't 
possible physically and for example small heat sizes 
were omitted  kk-ka mod –model. Next, the blows, 
where the increase in the temperature was over 20°C 
after the dropping sensor were included in mod>20 –
model and the blows with under 20°C increase in 
mod<20 -model. To show that preliminary modelling 
was done in the correct directions, statistical 
parameters are introduced in Table 1. It can be seen 
that the standard deviation decreases while moving 
towards the best model of these four preliminary 
models, mod>20 –model. 
  

Table 1. Statistics of preliminary modelling 
 

kk-ka kk-ka mod mod>20 mod<20
Average 0.37 0.50 0.54 0.32
Std dev. 1.301 0.174 0.138 0.186
# of blows 3787 3341 2700 641

 

 
The tree-like structure in Fig.3 shows, how the data is 
divided into different groups. The limits between 
different groups of variables are presented in Table 2. 
Variables are the converter number, heat size, carbon 
content, end temperature and remaining time after the 
dropping sensor measurement. 
 

 
Fig.3. Data classification tree 
 

Table 2. Classes of different variables 
 

Group Range
HeatBig >= 120 t hot metal
HeatSmall < 120 t hot metal
CarbonHigh (C3) 0.045 <= C-% < 0.08
CarbonMiddle (C2) 0.035 <= C-% < 0.045
CarbonLow (C1) < 0.035 C-%
TemperatureLow (T1) < 1660°C
TemperatureMiddle (T2) 1660 <= °C <= 1700
TemperatureHigh (T3) > 1700°C
Time<80 (t1) < 80 s
Time>80 (t2) > 80 s
Time40-110 (t3) 40 - 110 s
Time50-100 (t4) 50 - 100 s
Time60-90 (t5) 60 - 90 s

 
As an example of the complexity even after the 
classification, the distribution of the temperature 
slope versus the carbon percentage is shown in Fig. 
4. As the trend line is set into the figure, it can be 
seen that when the carbon percentage increases, the 
value of the slope decreases. This trend is in correct 
direction because as steel is blown to a smaller 
carbon percentage the rate of temperature increase 
grows. From the figure it can also be seen that the 
scattering is huge. 
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Fig. 4. Distribution of slope vs. carbon percentage. 
 
More detailed info on modelling procedure can be 
found from Ruuska et al, 2003. After discussing with 
the personnel of the steel plant, the end temperature 
was left out from the variable list. The remaining 
time after the dropping sensor measurement was left 
out from the variable list as well. It was omitted 
because using different time ranges did not have a 
very big effect on the value of the slope or on the 
standard deviation of the slope. In the following table 
(Table 3.) slopes for groups of big heat size and low 
carbon percentage for converter #3 are shown as 
example. 
 

Table 3. Slopes of groups 
 

Converter #3 HeatBig CarbonLow (C1)
Group

C1 C1T1 C1T2 C1T3
Average 0.57 0.47 0.58 0.65
Std dev. 0.116 0.096 0.108 0.126
# of heats 284 32 223 29

C1t1 C1t2 C1t3 C1t4 C1t5
Average 0.58 0.56 0.56 0.57 0.56
Std dev. 0.134 0.1 0.119 0.117 0.12
# of heats 124 160 185 229 130

 
 

4. PRACTICAL CONSIDERATIONS 
 
4.1 Need for Adaptivity 
 
There is a periodic variation in the slope. The 
variation correlates to the time the converter has been 
in use after relining. The variation is caused because 
the heat losses to the environment are different 
during the campaign. The variation of over three 
hundred and fifty slopes is presented (moving 
average of thirty blows and no filtering) in Fig 5. 
From the figure, it can be observed that there were 
periodic variations. It was recognised that adaptivity 
was needed; meaning that instead of constant slopes 
the slope is allowed to follow the variation over the 
lining campaign. 
 
 
 
 

Fig. 5. The variation of the slope (moving average 
           of thirty blows and no filtering). 
 
Theory about adaptation can be found from several 
textbooks, for example from Åström, 1989. In this 
case simple filtering with moving average within 
different groups was effective enough. 
 
The effect of adaptation was tested by using normal 
slope and adapted slopes in calculating the end 
temperatures. The test showed, how well the 
calculated temperature predicted the measured 
temperature at the end of the blow within the target 
window, ±10°C. It showed that the performance of 
the model increased from 67 % to 70 % as filtering 
was used. Median filtering was not used as it requires 
more calculation and it was observed that it doesn't 
give any benefit against average filtering. Those 
blows that weren't within the target window had 
some unexpected randomness. This kind of 
adaptivity is implemented in the automation system 
in Ruukki Production, Raahe Steel Works. 
 
 
4.2 Test results 
 
The performance of the temperature model was 
tested with data from all three converters. The test 
shows, how well the calculated temperature predicts 
the measured temperature at the end of the blow 
within the target window, ±10°C. All blows based on 
the time of the dropping sensor were accepted. 
However there were still blows, which do not fit into 
the temperature target window. The main reasons for 
this were the measurement error of the dropping 
sensor and the fact that the measured temperature 
does not always represent the temperature of the 
whole melt. In addition to this, there is a random, 
unexpected variation in all process conditions. This 
leads to the fact that the slope for the molten steel 
temperature can differ considerably from the average. 
The difference of the slope for two similar blows can 
be 0.4°C/s and thus if the remaining blowing time is 
quite long, for example one hundred seconds, the 
difference in the measured temperature can be as 
much as 40°C. In cases such as this there is a special 
need for the expertise of the operators in the control 
room. They need to be able to recognise that for 
some reason the temperature growth in the blow is 
not normal. The test results are presented in Table 4. 
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The following equations are needed in validating the 
success of the classification of data. The end 
temperature was calculated according to equation 2, 
by adding the difference of the total duration of the 
blow and the dropping time of the dropping sensor 
multiplied with the slope to the temperature obtained 
by the dropping sensor according to equation 2. The 
error was calculated as the difference of calculated 
temperature and the measured end temperature 
according to equation 3. 
 

)( sbsc ttSTT −+= ,  (2) 
 
where Ts is the temperature obtained by the dropping 
sensor, S (slope) is the growth in temperature per 
second, tb is the total duration of the blow and ts is 
the blowing time elapsed when the dropping sensor is 
used. 
 

fc TTe −= ,  (3) 
 
where Tc is the calculated temperature and Tf is the 
measured end temperature. 
 
Table 4. The testing results with different converters 

 
Converter #1 Converter #2 Converter #3
HeatBig HeatBig HeatBig
C1 C1 C1
274(356)->77.0% 313(399)->78.4% 246(367)->67.0%
C2 C2 C2
582(743)->78.3% 453(579)->78.2% 250(361)->69.3%
C3 C3 C3
596(782)->76.2% 588(741)->79.4% 219(287)->76.3%
HeatSmall HeatSmall HeatSmall
C1&C2 C1&C2 C1&C2
31(41)->75.6% 24(27)->88.9% 16(20)->80.0%
C3 C3 C3
165(212)->77.8% 93(132)->70.4% 34(51)->66.7%

 
The testing for the blows, which had less than 20°C 
rise in temperature, was done for converters #1 & 2. 
If the slope found for under 20°C rise in the 
temperature was used instead of the average group, 
the slope performance was much better. Of the 
blows, 70 – 80% were within the target window, 
±10°C, instead of the previous 40 – 60%. This 
grouping cannot be used in the final automation 
system; however, as if the operator decides to blow 
for example 20°C over the target temperature for 
some reason, the growth in the temperature would be 
normal. Instructions regarding this issue need to be 
given to the operators. They need to recognise that if 
the temperature is already near the target temperature 
as measured with the dropping sensor, the rise in 
temperature will be slower. This lower rise in the 
molten steel temperature is the result of a “hot spot”, 
from which the dropping sensor measures the 
temperature. So the dropping sensor measurement 
and the temperature measurement at the end of the 
blow are not directly comparable. 
 

The distribution of the error within the test run is 
shown in Fig 6. It can be seen that the error is 
distributed quite equally on both sides of zero. The 
range being about 50°C indicates that there are big 
random changes between the heats belonging to the 
same group according to their initial values. 
 

 
Fig. 6. Typical error distribution in test run. 
 
The target window was set to be ±10°C by the 
personnel of steel plant, but just for curiosity another 
target window was tested. Because it isn't so harmful 
if the temperature is higher than the target 
temperature, target window of -10 - +25°C was used. 
Having too high temperature isn't so harmful as 
further processing is also done in molten phase. If 
temperature is too low, however, there is risk of 
interrupted casting at the continuous casting process. 
The test results are presented in Table 5. 
 
Table 5. The testing results with different converters 

 
Converter #1 Converter #2 Converter #3
HeatBig HeatBig HeatBig
C1 C1 C1
314(356)->90.8% 350(399)->87.7% 275(367)->74.9%
C2 C2 C2
651(743)->87.6% 498(579)->86.0% 279(361)->77.3%
C3 C3 C3
678(782)->86.7% 642(741)->86.6% 255(287)->88.9%

 
 

5. CONCLUSION 
 
In this study it was found that the increase in the 
metal temperature after the dropping sensor 
measurement is a complex function of several 
variables. This increase rate may be considerably 
different, even for blows, which in the light of the 
initial values would appear to be identical. All the 
variables affecting the rise in temperature and their 
magnitudes cannot be modelled and so statistical 
modelling based on historical data was the natural 
choice. The blows were divided into classes based on 
the converter number, heat size and target carbon 
percentage. Also dividing by end temperature and 
remaining time after the dropping sensor 
measurement were used as variables, but they were 
omitted later. It was observed that use of the correct 
variables and the correct limits between the groups of 
the variables is essential in order to get good results. 
When the data was divided as mentioned above, 75 – 
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80% of the blows were within the target window of 
±10°C in the testing of the models. As always in the 
modelling based on historical data, good quality of 
the training data is extremely important. First of all, 
data pre-processing needs to be done very carefully, 
so we don't remove too much data, but also that we 
need to remove false data or data which doesn't have 
all the measurements needed. In addition two groups 
of blows were removed from training set: the blows 
with reblow, and the blows, where the additional 
material was added less than two hundred seconds 
before the dropping sensor measurement. The latter 
group was removed, because any effect of the 
additional material should not still be in progress as 
the dropping sensor is used. Also the blows, where 
the additional material was used after the dropping 
sensor measurement, were removed. The last group 
of blows was used in developing the models for the 
additional materials. The model for the additional 
materials has been presented in Ruuska et al (2004). 
 
Following conclusions can be drawn concerning the 
reliability of the temperature model: 

- Variation of the temperature slope within 
the converter campaign leads to the need for 
adaptivity. 

- The converter’s “hot spot” (temperature has 
a local maximum). 

- The temperature model was developed using 
two different kinds of measurements, the 
dropping sensor and manual measurement. 
The temperatures obtained from these 
measurements were not fully comparable. 

- In the temperature model there were only 
two groups based on the heat size. The 
temperature rise can be assumed to be 
different in the edge zones of these groups, 
but it was assumed that this difference was 
small compared to other variations. 

- When the carbon percentage of the heat was 
very low the temperature rise was quicker 
because of additional energy from iron 
oxidation. 

- As the temperature is being measured there 
may be for example scrap that has not 
melted or some other material addition close 
to the measurement spot, and which can 
cause a local, sometimes even big, 
temperature gradient. 

- General reliability of the temperature 
measurement; single temperature 
measurement represent only one spot of the 
melt and there was no information about 
possible temperature gradients. 

 
The temperature model introduced in this paper and 
the model for the additional material have been 
implemented into the automation system along with 
other models developed during the plant’s own 
project. Along with the models introduced in the 
paper the knowledge about the issues effecting the 
temperature growth in the molten steel has increased. 

Still there were several cases with an abnormal 
difference in the temperature rise compared to the 
average. The heterogeneous raw materials are likely 
to be the biggest reason for this variation. Steel 
converter process is very complex process and there 
is a great need for further research both on 
metallurgical and automation side. Also we need to 
try to find new methods for measurements and if 
possible, even direct measurements, to get to know 
more about the reactions taking place inside the 
converter. 
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