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Abstract: In this paper, we consider the problem of dynamically regulating the
timing of traffic light controllers in busy cities. We use a Stochastic Fluid Model
(SFM) to model the dynamics of the queues formed at an intersection. Based
on this model, we derive gradients of the queue lengths with respect to the
green/red light lengths within a signal cycle. We report preliminary numerical
results comparing the performance of the estimates with finite-difference and
smoothed perturbation analysis estimates. Then all estimators are used to optimize
the traffic system via Stochastic Approximation. Copyright (©)2005 IFAC
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1. INTRODUCTION

In this paper we consider the problem of eas-
ing traffic congestion by dynamically adjusting
the timing of the traffic light that regulates the
vehicle flow at a single intersection. This is a
problem that over the years has attracted the
attention of several researchers and many ap-
proaches have been proposed. In (Moskowitz et
al., 1997) a model for estimating the traffic condi-
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tions based on measured information is proposed
and in (Hoyer and Jumar, 1994) a fuzzy controller
is developed. In (De Schutter, 1999) an Extended
Linear Complementary Problem (ELCP) is for-
mulated and in (Zhao and Chen, 2003) a hy-
brid systems formulation is presented. Finally, in
(L. Head, 1996) a Perturbation Analysis frame-
work (Ho and Cao, 1991) is used and in (Fu and
Howell, 2003) a Smoothed Perturbation Analysis
(SPA) is adopted. In this paper, we also use In-
finitesimal Perturbation Analysis (IPA) but the
model we use to derive the IPA estimators is
a Stochastic Fluid Model (SFM). Subsequently,
when we implement the estimators, we use ob-
servations from the actual Discrete-Event System
(DES). Though SFMs might not be very accurate



for performance evaluation, they have proven to
be very robust with respect to optimization, be-
cause they seem to capture the salient features of
the problem. Several authors have reported that
use of SFM efficiently lead to optimal or near-
optimal solutions (see (Cassandras et al., 2002)
and references therein). Using the SFM modeling
framework, a new approach for resource manage-
ment is being developed which is based on IPA
(Cassandras et al., 2002). In this approach, we de-
rive estimators of the gradient of the performance
measure of interest with respect to the control
parameters based on SFMs. Then we evaluate
them based on observations on the actual DES
and use the resulting estimates with stochastic
approximation algorithms to determine the opti-
mal parameter setting. This approach has some
important advantages.

e The gradient estimation is done on-line, thus
the approach can be implemented on the traf-
fic light controller; as operating conditions
change, it will aim to continuously seek to op-
timize a generally time-varying performance
metric (this holds for both SPA and SFM-
based estimators).

e Unlike the SPA estimators, SFM-based esti-
mators do not require any knowledge of the
system’s underlying stochastic processes.

o SFM-based IPA estimators are generally sim-
pler to implement than SPA

e SPA estimators are generally more accurate
than the SFM-based IPA estimators but sim-
ulation results indicated that in optimization
problems they have comparable performance.

2. MODEL
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Fig. 1. Intersection model

For this paper, we model the traffic light with two
buffers competing for the same server, as shown
in Fig. 1. Vehicles arrive at queue ¢ € {1,2}
with rates a4(t) and leave the intersection with
rates [q(t;0) < p(t), where 0 is a parameter
that affects the traffic light operation (e.g., timing
of red/green periods) and p(t) is the maximum

capacity of the intersection. For ¢ = 1,2, we define
L,(t;0) to be the number of vehicles waiting in
queue g at time ¢t and L,(t;6) to be the average
L, (t;0) up to time ¢, i.e.,

Eq(t; 0) =

| =

t
/Lq(a:;ﬁ)dx.
0

Typically, one is interested in minimizing L, (¢; 0),

so we seek estimators of w, q=1,2.

We assume that a complete cycle (T') constitutes
the completion of a green and red light period. For
queue 1, we denote the green light period with
T1 and the red light period with 75, T = T; +
Ty (For queue 2, T; and T denote the red and
green light periods respectively). Furthermore, we
assume that T is fixed, and the control parameter
0 is either T} or T5.

For the SFM approximation, we let z4(t;6), ¢ €
{1,2} denote the fluid buffer content at ¢ € [0, 5]
(where S is the observation interval) and define

Qq(tée) =

~+ | =

/txq(T;G)dT. (1)
0

We derive sample derivatives of Q4(t;6) with re-
spect to 6 using two different SFM approxima-
tions. Recall that L,(t;0) and Q(t; 0) correspond
to the average queue levels up to t at street
g € {1,2} of the discrete-event and stochastic
fluid models, respectively. We take Qq4(¢;6) as an
approximation of L,(t;6). Using IPA, d(‘?‘éig;e) is

derived, which is used to approximate W.

3. SIMULTANEOUS MODEL

In this section we assume a rather unrealistic
SFM where both queues are served simultane-
ously. Buffer 1 receives a fraction € of the intersec-
tion capacity and buffer 2 gets the remaining 1—6.
Thus, f1(t;6) = 0p(t) and B2(t;60) = (1 — 0)p(t).
In the DES, this approach would be implemented
as Ty = 0T and To = (1 — 0)T.
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Fig. 2. Typical sample path for the simultaneous
model



3.1 Sample Path Partition

For this model we partition the sample path into
empty and non-empty periods. Empty periods are
maximal intervals where x,(¢;6) = 0 while non-
empty intervals indicate the intervals such that
z4(t;0) >0, g € {1,2}. Let EI = (b?,€?) indicate
the ith non-empty period, where b} indicates the
beginning and e the end of the ith non-empty
period at queue ¢ € {1,2}. Using this notation,
the sample functions (1) can be written as

quse ——Z/xqtedt

J= lbq

where N, denotes the random number of non-
empty periods in the interval [0, S]. Differentiating
with respect to 6 we get

e

z]i:/dxth dt(3)
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Lemma 3.1. The derivative of x4(t;0), ¢ € {1,2}
with respect to @ is given by

Bl —s(q) [ piryir (@)
bd
where
s ={ 7' 102, 5)

All proofs are omitted due to space limitations.
Substituting (4) in (3) we get the following result.

Theorem 3.1. For g € {1,2}, the sample deriva-
tives for the workload are given by

qu - Z / / 7)drdt (6)

qubq
J

where s(q) is given by (5).

Example: Let us consider the case where p(t) = p
(constant). In this case, it is straightforward to
show that
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Note that these estimators are extremely simple
to implement. We just accumulate the squares of
the duration of each non-empty period.

4. ON/OFF MODEL

In this section we study a more relevant SFM
where the entire server capacity is allocated to
the first queue for a period 0 < § < T and to the
second queue for a period 0 < T — 60 < T. Fig. 3
shows a typical sample path due to this model.

X,(6,0)

X,(t;0)

DT t

KT KT+6

Fig. 3. Sample path for the ON/OFF model

4.1 Sample Path Partition

In this case, the sample path is divided into
intervals of length T, and the dynamics of the two
queues are given by

ar(t) — Bi(t0),
dri(t;0) if kT <t<kT+6 ()
dt - al(t)v
ifkT+0<t<(k+1)T
Otg(t)7
dy(t;0) ifET <t<kT+0 ()
dt ) azx(t) — Ba(t;0),
if kT +0<t<(k+1)T
k=1,2,---. The outflow rates are given by

ifET <t<kT+80
and z1(t;0) > 0

kT <t<kT+6 (10)
and z1(¢;0) =0
0, otherwise

P2(t),
kT +0<t<(k+1)T
and zo(t;6) >0
Ba(t:0) =1 (), (1)
kT +60<t<(k+1)T
and z3(t;60) =0
0, otherwise

pl(t)a

Bu(t;0) = ¢ ar(t),

where p1(t) and po(t) are the maximum possible
outflows from queues 1 and 2, respectively. The
sample functions of (1) can be written as

(k+1)T

K K
= O = > /
k=

k=1

(t:0)dt (12)

where K is the number of periods included in
the interval [0,S] and the index ¢ € {1,2}.
Differentiating with respect to 6 we get
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dQ,( K ds( K
dqa SZ 59 Ez/ t(13)
kT

k=1

For simplicity, let us first try to evaluate a single
term from the summation for ¢ = 1, i.e.,

(k+1)T

deL(0) da: (t;0)
a0 / a0

kT

Given the queue dynamics of (8), we determine
the queue content

t

11 (KT;0) + / ar(t) — pr(t)dt,

1fkT<t<e
z1(t;0) =4 0, ifej, <t<kT+9 (14)
t

x (KT +0;0) +

kT+0
ifkT+0<t<(k+1)T

aq (t)dta

where ejl indicates the time when the buffer

empties during the kth period. If no such event
occurs, then we set e, = (kT'40), thus the second
case does not occur. Next, differentiating (14)

A (bT0)  pr<i<el
dui(t:0) _ J o, ifej <t<kT+6 (15)
a0 dxy (KT +6;6) (KT 4 6),

9
T +0<t<(k+1)T

. . d t:0) . .
In other words, the derivative % is a piece-

wise constant function. Even though it may look
complicated, this function is very easy to imple-
ment iteratively using a single accumulator! As
a result, the derivative dele(G) is also very easy
to evaluate; it is just the derivative times the

corresponding intervals.

Q1 (0 d1 (KT 0)
o S Z M)
Hr-p)
« (W (kT + 9))(16)

where as mentioned earlier, e}k is the time that
buffer 1 empties during the interval [kT kT + 0)
and if no such event occurs, then e = kT + 6.

dQ;a(G) can be derived in a similar fashlon.

5. SIMULATION RESULTS

In this section, we use simulation to acquire nu-
merical results for the SFM estimators derived in

Table 1. Simulation Cases

Case | 1/X | 1/p | Ty T
C1 4.5 2.0 | 30 60
C2 5.0 1.5 | 35 | 110
C3 3.5 0.5 | 20 40
C4 10.5 | 5.0 | 20 40

this paper. These estimators along with the SPA
estimators are then compared to finite difference
estimates. All simulation results are based on the
scenarios presented in Table 1. In all cases, the
interarrival and service time distributions were
exponentially distributed with rates A and u, re-
spectively, the number of cycles was 10,000, and
the number of replications was also 10,000. Esti-
mators were simulated for all 4 cases; however, the
optimization was carried out for C1, C2 and C3.

5.1 Stochastic Fluid Model Estimators

The simultaneous model estimators (7) were im-
plemented on the underlying stochastic DES
model, where for p we used the mean service
rate of the server. As indicated in the simulation
results (labelled SFM1), these estimators did not
work well partly because the service rate of the
buffer was not fixed and deterministic (as assumed
by this SFM model) and partly because this model
did not capture the fact that at any queue, during
the “red” light period, the service rate is 0.

The ON/OFF model was also implemented on
the underlying DES stochastic model, where for
the instantaneous arrival rates ag4(t) in (16), we
simply used the average arrival rate. The results
for this model are labelled SFM2. In addition, we
noticed that the assumption that the queue stays
empty once it empties causes the estimator to be
low, because in general the queue can become non-
empty again during the same green-light cycle.
We made a slight modification to the estimator to
allow for arrivals to the queue during a green light
phase while the system is empty. Instead of reset-
tin, w whenever the queue empties, we onl
g q pties, y
reset When the queue is empty at the epoch of the
light change. This makes intuitive sense because
the perturbation can only propagate through the
cycle if the system is nonempty. The results of the
modified estimators are labelled SFM2mod.

5.2 Smoothed Perturbation Analysis (SPA)

Following the framework of (Fu and Hu, 1997),
the general SPA estimator consists of an IPA term
and a conditional term, the latter due to possible
critical event order change. The SPA estimator is

dE|[L] _dL P(B(A0))
( do )SPA_dGJ’_ v

Jim === 0 L(8),(17)



where G(A0) denotes a critical event change due
to a perturbation of Af, and JL(3) denotes
the corresponding expected change in the perfor-
mance measure L.

Using this general form we derived four esti-
mators, left and right-hand estimators for both
queues. Here we state two of the SPA estimators.
The right-hand estimator for queue 1 is

dE[I_/l] f1 Oél (1)
( do >SPA’ NTzlfFl [RH

where «; is the time until light change (from green
to red) from last entry to service during ith cycle,

Rﬁf ) is the expected time to empty queue 7, given
n cars in the queue, g; is the number in queue at
the epoch of the ith light change from green to
red, f; is the service time density and Fj; is the
service time distribution. The left-hand estimator
for queue 2 is

() o e 2

where H; is the number of “critical” departures
in cycle 4. In the results, we denote SPA(RH) and
SPA(LH) as the right hand and left hand SPA
estimators respectively. Finally, FD denotes the
finite difference results.

fa(a) [Rfﬁ)}
1— Fa(oy)

5.3 Stochastic Approximation (SA)

SA is a gradient-based stochastic optimization
algorithm, where the “best guess” of the optimal
parameter is updated iteratively based on the es-
timate of the gradient of the performance measure
with respect to the parameter (Fu and Hu, 1997).
The general form of SA is

rn= ] ¢ —anVia), (18)

(0,tp)

where ¢} is the parameter value at the beginning
of iteration n, a, is a positive sequence of step
sizes, VJ,, is the estimate of V.J,, (t% ), the gradient
of J, at parameter value t} and, [[ is the
projection onto Q. [], keeps the parameter within
the valid range of values. In this implementation of
the SA algorithm, [ ], returns the parameter back
to the stable region if the update has caused some
parameter to move outside of the stable region.
From queuing theory, for queue stability we need
)\1XT<M1XT1 and)\ng<u2><(T—T1).
Thus, we have as our stable region the following
A A2

— xT<Ti <Tx(1—— 19
251 ! ( Mz) (19)

Table 2. Results for Case 1: dE[L,]/df

estimator mean std err
SPA (RH) -2.465 0.001
SPA (LH) -2.465 0.001
FD (.05) -2.475 0.024
SFM1 -147.82 0.154
SFM2 -1.713 0.002
SFM2mod -2.188 0.006

Table 3. Results for Case 2: dE[L,]/df

estimator mean std err
SPA (RH) -8.3904 0.0061
SPA (LH) -8.3835 0.0066
FD (.05) -8.2115 0.0356
SFM1 -915.4631 1.4496
SFM?2 -0.1683 0.0000
SEFM2mod -0.2412 0.0000

Table 4. Results for Case 3: dE[L,]/d0

estimator mean std err
SPA (RH) -0.1717 0.0000
SPA (LH) -0.1716 0.0001
FD (.05) -0.1716 0.0003
SFM1 -11.1422 | 0.0004
SFM2 -0.1674 0.0000
SFM2mod -0.1960 0.0000

Table 5. Results for Case 4: dE[L1]/d

estimator mean std err
SPA (RH) -20.8959 0.0424
SPA (LH) -20.8848 0.0417
FD (.05) -20.2334 0.1146
SFM1 -775.8161 4.0491
SFM?2 -19.0584 0.0979
SFM2mod -19.7437 0.0989

5.3.1. Gradient FEstimation  The results are
shown in Tables 2-5. A comparison of the re-
sults shows that the simultaneous model estimator
(SFM1) is large in magnitude compared to the
other estimates. We take the FD estimate as the
true value in Table 6 to compare the percent error
of each estimator. The left and right hand esti-
mates are extremely accurate. Both the ON/OFF
(SFM2) and the modified ON/OFF (SFM2mod)
models provide fair estimates of the gradient. The
standard error for the four aforementioned estima-
tors is always less than that for the FD estimates.
Even though the estimates do not match the FD
estimates exactly, they still look promising for the
system optimization.

5.8.2. Optimization — We noticed that the SFM
gradient estimated were not very accurate; how-
ever, from Fig. 4 we can see that the estimates
have a very important quality. These gradient es-
timates are 0 at the minimum of the function. This
is a good sign that the SFM estimates can be used
for optimization via a gradient descent algorithm
such as SA. All six gradient estimation techniques
cross 0 at the minimum of L. Fig. 4 shows this



Table 6. Percent error of estimators with
FD as true value

estimator case 1 % error | case 2 % error
SPA (RH) 20.72% 2.18%
SPA (LH) ~0.70% 2.10%
FD (.05) 0.00% 0.00%
SFM1 6170.05% 11048.61%
SFM2 -30.86% -97.95%
SFM2mod -11.87% -97.06%
estimator case 3 % error | case 4 % error
SPA (RH) 0.09% 3.27%
SPA (LH) 0.03% 3.22%
FD (.05) 0.00% 0.00%
SFM1 6393.84% 3734.33%
SFM2 -2.45% -5.81%
SFM2mod 14.21% -2.42%
estimator avg abs error
SPA (RI) 157%
SPA (LH) 1.51%
FD (.05) 0.00%
SFM1 6836.71%
SFM2 34.27%
SFM2mod 31.39%
Case 1
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Fig. 4. Gradient Estimation Methods vs L
Table 7. Near optimum range for C1

estimator 10% | 5% 1%
SPA (RH) | 77.0 | 46.4 | 10.9
SPA (LH) | 77.8 | 45.6 | 10.9
FD (.05) | 76.5 | 45.0 | 10.1
SFM1 48.9 | 30.2 5.7
SFM2 79.3 | 479 | 10.9
SFM2mod | 73.6 | 45.0 | 10.0

for C1, the same property of the estimators was
exhibited for C2 and C3 as well.

Because SA is an iterative algorithm, not only are
we concerned with reaching the optimum, but we
would like to stay near the optimum for subse-
quent updates. Therefore, we ran simulations and
counted the number of times the average number
in system was within p% (for p = 10,5,1) of the
minimum average number in system based on the
current T} from the SA algorithm.

All six gradient estimation techniques were imple-
mented in the SA algorithm for cases C1, C2 and
C3. Tables 7,8 and 9 show the number of times
each estimation fell within the aforementioned
optimum ranges.

Table 8. Near optimum range for C2

estimator 10% | 5% 1%
SPA (RH) | 92.9 | 89.9 | 60.1
SPA (LH) | 92.7 | 90.2 | 61.0
FD (.05) | 94.0 | 91.8 | 57.0
SFM1 3.0 2.6 1.2
SFM2 95.9 | 94.3 | 66.3
SFM2mod 95.1 91.3 10.9

Table 9. Near optimum range for C3

estimator 10% | 5% | 1%
SPA (RH) 43.0 21.8 4.6
SPA (LH) | 43.1 | 224 | 4.2
FD (.05) | 41.2 | 19.9 | 3.9

SFM1 43.0 | 21.7 | 4.7

SFM2 48.3 | 26.4 | 4.7

SFM2mod | 42.9 | 21.7 | 4.6
REFERENCES

Cassandras, C. G., Y. Wardi, B. Melamed, G. Sun
and C. G. Panayiotou (2002). Perturbation
analysis for on-line control and optimization
of stochastic fluid models. IEEE Transactions
on Automatic Control 47(8), 1234-1248.

De Schutter, Bart (1999). Optimal traffic light
control for a single intersection. In: Proceed-
ings of the IEEE American Control Confer-
ence. Vol. 3. pp. 2195 — 2199.

Fu, M.C. and J.Q. Hu (1997). Conditional Monte
Carlo: Gradient Estimation and Optimization
Applications. Kluwer Academic Publishers.
Boston, Massachusetts.

Fu, M.C. and W.C. Howell (2003). Application
of perturbation analysis to traffic light signal
timing. In: Proceedings of IEEE Conference
on Decision and Control. pp. 4837-4840.

Ho, Y.C. and X.R. Cao (1991). Perturbation
Analysis of Discrete Event Dynamic Systems.
Kluwer. Boston, MA.

Hoyer, Robert and Ulrick Jumar (1994). Fuzzy
control of traffic lights. In: Proceedings of
the IEEE World Congress on Computational
Intelligence. Vol. 3. pp. 1526 — 1531.

L. Head, F.W. Ciarallo, D. Lucas V. Kaduwela
(1996). A perturbation analysis approach to
traffic signal optimization. In: INFORMS Na-
tional Meeting.

Moskowitz, S., E. Fernandez-Gaucherand and
M. Whalen (1997). Passage-detector-based
traffic queue estimation in intelligent trans-
portation systems: A computational study of
competing algorithms. Applied Mathematics
and Computation 86, 93-113.

Zhao, X. and Y. Chen (2003). Traffic light control
method for a single intersection based on hy-
brid systems. In: Proc. of the IEEE Intelligent
Transp. Systems. pp. 1105 — 1109.



