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Abstract: This paper introduces the concept of Receding Horizon Control (RHC) to 
Genetic Algorithm (GA) for real-time implementations in dynamic environments. The 
methodology of the new GA is presented with the emphases on how to effectively 
integrate the RHC strategy by following some RHC practices in control engineering, 
particularly, how to choose the length of receding horizon and how to design terminal 
penalty. Simulation results show that, when the RHC based GA is applied in dynamic 
environments, both computational efficiency and performance are improved in 
comparison with existing GAs.  Copyright © 2005 IFAC 
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1. INTRODUCTION 

 
Genetic algorithm (GA) is a large-scale parallel 
stochastic searching and optimizing method inspired 
by the biological mechanisms of evolution and 
heredity. It has now been widely used for numerical 
optimization, combinatorial optimization, classifier 
systems and many other engineering problems 
(Goldberg, 1989, Mitchell, 1996).  
 
GA falls in the category of generate-and-test 
algorithms (Fogel, 1998). Consequently, the solution 
quality and convergence speed of GA strongly 
depend on the size of solution space of the concerned 
problem. Generally, as the size of solution space 
increases, the solution quality of GA degrades, and 
the convergence speed of GA slows down. These 
two negative changes in terms of the size of solution 
space often make real-time implementations of GAs 
unrealistic for complex problems, since online 
computation process has to be subject to a certain 
time limit. Another issue which has to be addressed 
is the influence of disturbances/uncertainties on the 
solution quality in dynamic environments.  
 
This paper integrates the concept of RHC (Receding 
Horizon Control), or MPC (Model Predictive 
Control), into GA, delivering a new algorithm 
suitable for real-time implementations to a wide 
range of optimization problems in dynamic 
environments. RHC is an N-step-ahead online 
optimization strategy, and has been widely adopted 
in control engineering and proved very successful to 
control plants and processes in dynamic 
environments (Clarke, 1994). Recently, several 
researchers studied how to use GA as online 
optimizer for MPC in control engineering (Onnen et 

al, 1997, Sarimveis and Bafas, 2003). Differently, 
this paper focuses on how to make RHC serve GA, in 
order to develop a general GA-based methodology 
for various engineering problems, not just for control 
engineering, in dynamic environments. Every time 
the RHC based GA conducts online optimization, it 
is only interested in the period of current receding 
horizon rather than the entire dynamic process. How 
to choose the length of receding horizon and how to 
design terminal penalty are two key factors in the 
success of the new algorithm for real-time 
implementations in dynamic environments. As a 
result of introducing the concept of RHC, the real-
time properties of GA are improved, and solution 
quality of GA becomes more robust under the 
influence of disturbances and/or uncertainties in 
dynamic environments.  
 

2. RHC STRATEGY 
 
Receding horizon control has proved to be a highly 
effective online optimization strategy in the area of 
control engineering, and it exhibits many advantages 
against other control strategies (Clarke, 1994). It is 
easy for RHC to handle complex dynamic systems 
with various constraints. It also naturally exhibits 
promising robust performance against uncertainties 
since the online updated information can be 
sufficiently used to improve the decision. In this 
framework, decision is made by looking ahead for N 
steps in terms of a given cost/criterion, and the 
decision is only implemented by one step. Then the 
implementation result is checked, and a new decision 
is made by taking updated information into account 
and looking ahead for another N steps. RHC has now 
been widely accepted in the area of control 
engineering. Recently, attentions have been paid to 



    

     

applications of RHC to areas like management and 
operations research (Schutter and Van den Boom, 
2001, Chand et al, 2002).  
 
Fig. 1 compares the RHC strategy with some other 
optimization strategies in an intuitive way. It is 
evident that offline optimization strategy, as shown 
in Fig. 1.(a), is not suitable for dynamic 
environments, although it is ideal for simplifying 
problems and analyzing algorithms theoretically. 
Most GAs in literature are designed and then tested 
mainly by using offline strategy, e.g., see Sharma et 
al (2004). As response to changes in dynamic 
environments, an online optimization routine is 
usually run periodically to re-calculate the decision 
for the period from the current moment to the end of 
dynamic process. We call this strategy conventional 
dynamic optimization (CDO), as shown in Fig. 1.(b). 
It is straightforward to transform an offline 
optimization strategy based algorithm into CDO 
strategy, since no modification to the algorithm is 
required but just initial conditions change. The real-
time properties could be a problem since offline 
algorithm considers no time limit to the optimization 
process. The another problem in CDO strategy is that 
the performance could be very sensitive to 
disturbances and/or uncertainties in dynamic 
environments. However, to apply GAs in dynamic 
environments, existing literature simply follows the 
CDO strategy (Hu et al, 2001).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As illustrated in Fig. 1.(c), thanks to the idea of 
receding horizon, RHC strategy provides a possible 
solution to the problems the CDO strategy faces. A 
properly chosen receding horizon can effectively 
filter out most unreliable information and reduce the 
scale of problem. The latter is especially important to 
any time-consuming algorithms such as GA to 
satisfy the time limit on online optimization process. 
However, how to integrate RHC strategy into GA to 
develop an effective and practicable method for real-
time implementations in dynamic environments is 
more than to simply change initial and final 
conditions for an offline strategy based GA. To make 
them work in harmony, the GA based online 

optimiser should be designed from an RHC point of 
view in the first place. Therefore, unlike other 
literature, in this paper, there is no offline strategy 
based GA to be transformed into online algorithm. 
As will be explained in depth later, some techniques, 
particularly terminal penalty, which is widely used 
by RHC in control engineering, are adopted to design 
the RHC based GA proposed in this paper. 
 

3. RHC BASED GA 
 
Consider a dynamic process with starting time TS and 
ending time TE, denoted as DP(TS, TE). The purpose 
is to make a series of decision, plan, or control, etc, 
during the time period from TS to TE, such that the 
behaviour of DP(TS, TE) would be optimal in terms of 
a certain objective function. Suppose that the 
decision-making process is based on a discrete-time 
frame in a dynamic environment, each step (sampling 
interval) is tSI, and the process DP(TS, TE) is E steps 
long. Let k indicate the time index. k=0 corresponds 
to  the starting time TS, and k=E to the ending time 
TE. Let s(k), k=0,…,E-1, denote the decision executed 
in the kth step/interval, and x(k), k=0,…, E, denote 
the internal state of DP(TS, TE) at time instant k. The 
behaviour of DP(TS, TE) in a dynamic environment is 
judged by an objective function 

0 0([ (0), (1), , ( 1)],[ (1), (2), , ( )])J J s s s E x x x E= −L L .   (1) 

Hereafter, we call s(·) as control signal, x(·) as system 
state and J0 as performance index, in order to keep 
consistent with the terminologies of RHC. As shown 
in (1), J0 is usually a function of control history and 
system state trajectory. Control history is basically 
related to consumed energy/cost, and system state 
trajectory is often expected to follow a specified 
reference or have a certain feature. The purpose to 
optimize the process DP(TS, TE) is to achieve 
desirable system targets while consuming as less as 
possible energy/cost. In a dynamic environment, s(k) 
needs to be online calculated in real-time at time 
instant k, and then implemented during the kth 
step/interval.  
 
Following the CDO strategy, existing GAs for real-
time implementations in dynamic environments are 
designed based on the following online optimization 
problem to calculate s(k): 

1 1

1
( ) ( )

( )min
S k k

J k
φ∈

, subject to 
1( )kΘ               (2) 

where J1(k) is a new performance index, 
1( )kφ  is the 

solution space, 
1( )kΘ  is a set of constraints, and 

S1(k) is a solution for the period from the current time 
to the end of dynamic process  

1( ) [ ( | ), ( 1| ), , ( 1| )]S k s k k s k k s E k= + −L , 1E k≥ +     (3) 

where s(k+i|k), i=0,…,E-k-1, is the control signal for 
the (k+i)th time interval but determined at the kth 
time instant, different from s(k), which is the control 
signal implemented at the kth time instant. J1(k) is 
usually defined based on J0 but in terms of predicted 
control history and predicted system states  

1 1( ) ([ ( | ), ( 1| ), , ( 1| )],

[ ( 1| ), ( 2 | ), , ( | )])

J k J s k k s k k s E k

x k k x k k x E k

= + −
+ +

LL      (4) 

Start point End point 

(a). Offline optimization:  Optimize the whole dynamic 
process based on the predicted information in advance, and 
then the solution is implemented no matter what happens. 

Start ponit End point 

(b). Conventional dynamic optimization (CDO):  Optimize 
over the period from the current time k to the end of the 
dynamic process, and then execute the optimal sub-solution 
over the period from k to k+1. At time k+1, repeat the same 
procedure based on new information. And so no. 
 

Current time k k+1 

Start point End point 

(c). Receding horizon control (RHC):  Optimize over the 
predictive horizon (from the current time k to time k+N ), and 
then execute the optimal sub-solution over the period from k to 
k+1. At time k+1, repeat the same procedure based on new 
information. And so no. 

Current time k k+1 k+N 
…

 Fig. 1. Basic ideas of some optimisation strategies 



    

     

where x(k+i|k), i=1,…,E-k, is the (k+i)th time instant 
system state predicted at the kth time instant.  
 
Since RHC is an N-step-ahead online optimization 
strategy, the online optimization problem (2) needs 
to be reformulated as follows: at time instant k (or 
the kth step), resolve 

2 2

2
( ) ( )

( )min
S k k

J k
φ∈

, subject to 
2( )kΘ              (5) 

where 

2
1

[ ( | ), ( 1| ), , ( 1| )],
( )

( ),

s k k s k k s k N k k E N
S k

S k k E N

+ + − < −
= ≥ − L ,  (6) 

is a solution for the period of receding horizon at 
time instant k, N is the length of receding horizon, 

2( )kφ  is the solution space for S2(k), 
2( )kΘ  is a set of 

constraints, and 

1

2

1

([ ( | ), ( 1| ), , ( 1| )],

[ ( 1| ), ( 2| ), , ( | )])
( )

( ( | ))

( )

J s k k s k k s k N k

x k k x k k x k N k k E N
J k

P x k N k

J k k E N

 + + − + + + < −=
+ + ≥ −% LL    (7) 

is the performance index under RHC strategy. In 
J2(k), 

1J%  is a function similar to J1(k) in (4), and 

P(x(k+N|k)) is terminal penalty, which has been 
widely used in control engineering for guaranteeing 
the stability of RHC. These variables and functions 
in Problem (5) will be explained and analysed in 
details later. Since Problem (5) is the same as 
Problem (2) when k E N≥ − , hereafter, only the case 
of k<E-N is considered in RHC based GA. 
  
Clearly, the concept of RHC is explicitly reflected in 
S2(k) and J2(k). With S2(k) and J2(k) defined for a 
certain problem, the methodology of how to design 
RHC based GA is given by the flow chart in Fig. 2. 
From Fig. 2, it is clear that, besides common 
practices in GAs such as crossover and mutation, the 
concept of RHC is integrated into GA during 
choosing Np and Ng and designing the chromosome 
structure and fitness function. As will be shown later, 
the introduction of RHC strategy is not as simple as 
it looks in Fig. 2, and once RHC is properly 
integrated, the RHC based GA will become much 
more advanced than existing GAs. 
 
Remark 1: Different from existing GAs designed 
based on Problem (2), the RHC based GA grounds 
on Problem (5). Hereafter, for the sake of 
identification, existing GAs are denoted as 
CDO_GA, and the new algorithm proposed in this 
paper as RHC_GA. From the definitions of S1(k) and 
S2(k), one can see that, in most time, S2(k) is shorter 
than S1(k). Suppose each control signal ( ) hs R⋅ ∈  and 

k<E-N, then ( )
1( ) E k hS k R − ×∈  and 2( ) N hS k R ×∈  at 

time instant k, i.e., ( )
1( ) E k hk Rφ − ×⊆  and 

2(0) N hRφ ×⊆ . 
There may be some kind of implicit relationship 
between 

1( )kφ  and 
2( )kφ , but 

2( )kφ  is generally not a 

subset of 
1( )kφ . As for 

1( )kΘ  and 
2( )kΘ , they should 

both include the same system dynamics, constraints 
for single control signal and single system state. If 

1( )kΘ  has some constraints for S1(k) rather than for a 

single control signal, then 
2( )kΘ  should also have 

similar but not exactly the same constraints for S2(k) 
due to the introduction of receding horizon. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Remark 2: GA is usually very time-consuming. One 
motivation of introducing RHC to GA is to reduce 
the computational burden so that the new algorithm 
could be practicable for real-time implementations. 
Since GA is stochastic searching algorithm by nature, 
the computational burden theoretically depends on 
the size of solution space φ . Suppose each element 
in a control signal, si(.), i=1,…,h, is represented by d 
genes in a chromosome, and the information 
recorded in each gene can vary within a certain 
discrete-value set, which has w different members. 
Theoretically, one then has  

( )
1 2( ( )) ( ( ))E k N h dSize k w Size kφ φ− − × ×= .   (8) 

Practically, the computational burdens of CDO_GA 
and RHC_GA can be estimated in another way. 
Basically, to prevent the performance of GA from 
significantly degrading as the result of larger solution 
space (longer chromosomes), the population in a 
generation of chromosomes, Np, and the maximum 
generations of evolution, Ng, should increase to a 
reasonable level correspondingly. Suppose they are 
both simply proportional to the length of 
chromosomes. At time instant k<E-N, one has 

2
,1 ,2( ) ( (( ) / )) ( )c cN k round E k N N k= − .    (9) 

where Nc,1(k) and Nc,2(k) are the numbers of all 
chromosomes used by CDO_GA and RHC_GA, 
respectively. For those operations carried out based 

Fig. 2. Flow chart of RHC_GA  



    

     

on chromosomes, such as calculating fitness and then 
sequencing, the corresponding computational burden 
for CDO_GA may be 2(( (( ) / )) )c round E k NΨ −  

times heavier than that of RHC_GA, where 
cΨ  is a 

function determined by the algorithms adopted for 
those chromosome-based operations. For those 
operations based on genes, such as crossover and 
mutation, how many times they apply to a single 
chromosome often depends on the length of 
chromosome. Simply suppose the total times these 
gene-based operations apply to a chromosome is 
proportional to the length of chromosome. Therefore, 
the gene-based computational burden in CDO_GA is 

2( (( ) / )) ( (( ) / ))ground E k N round E k N− Ψ −  times 

heavier than that of RHC_GA, where 
gΨ  is 

determined by crossover and mutation algorithms. 
 
Remark 3: If the algorithms adopted for 
chromosome-based and gene-based operations are 
already chosen, the upper bound of computational 
burden in CDO_GA mainly depends on E, which is a 
system parameter and cannot be changed artificially. 
If a sampling interval is fixed, for those E resulting 
in an upper bound larger than a sampling interval, 
real-time implementation of GA is impossible. While 
in RHC_GA, the upper bound of computational time 
can be adjusted by choosing different N, making sure 
that the sampling interval is not exceeded, no matter 
what E is. Therefore, the introduction of RHC to GA 
can significantly reduce the computational burden, 
and as a result, RHC_GA is suitable for real-time 
implementations. 
 
Remark 4: The terminal penalty P(x(k+N|k)) is used 
to estimate the cost when the system runs from the 
terminal state x(k+N|k) to the end of dynamic 
process. How to design a proper terminal penalty 
P(x(k+N|k)) is a crucial issue for RHC_GA. This 
mainly depends on the nature of the dynamic process 
and the problem to be solved. For some systems, 
T(x(k+N|k))=0 in RHC_GA leads to no degradation 
of performance. For example, the sequencing 
problem in traffic systems or service systems, where 
minimizing delays is often the main concern, 
probably does not need terminal penalty. By the 
nature of sequencing problem, generally, if the delay 
at the early stage is small, then the total delay in the 
whole dynamic process is also small. Therefore, for 
such systems, as long as the delay over the receding 
horizon is minimized, the terminal penalty is not 
necessary. However, terminal penalty P(x(k+N|k)) 
may be crucial to many other systems, particularly to 
those systems with special constraints on the system 
states at the end of dynamic process. For example, in 
route planning problems, besides a certain 
performance index to be minimized, the destination 
must be reached. A successful implementation of 
RHC_GA in route planning problems definitely 
depends on a properly designed terminal penalty. If 
P(x(k+N|k))=0 for route planning problem, RHC_GA 
might never lead to the destination.   
 

Remark 5: Disturbances and/or uncertainties in 
dynamical environments are another motivation for 
introducing the concept of RHC to GA. In a 
dynamical environment, basically, the accuracy of 
information decreases with time. In other words, the 
information for the farther future is more uncertain 
and therefore more unreliable. CDO_GA simply 
exposes its performance to all disturbances and/or 
uncertainties, while RHC_GA can filter out most 
unreliable information. It is very important to choose 
a receding horizon of proper length. Firstly, 
RHC_GA uses the receding horizon as a filtering 
window. Any information beyond this window will 
not be used for current optimization since it is 
usually more unreliable. If the receding horizon is 
too long, much unreliable information will be 
involved in optimization. While if too short, some 
necessary information will be filtered out and 
consequently the performance of RHC_GA becomes 
short-sighted. Secondly, the choice of length of 
receding horizon is subject to real-time properties, as 
discussed in Remark 3.  
 

4. EXAMPLES 
 
Two case studies are reported in this section in order 
to demonstrate how to design an effective RHC_GA 
for real-time implements in dynamic environments. 
The emphasis is on those RHC related techniques 
and details, particularly the terminal penalty and the 
length of receding horizon.  
 
4.1 Implementation to free-flight path optimization 
 
“Free Flight (FF)” is one of the most ambitious and 
promising schemes in the development and 
innovation of future aviation concepts and air traffic 
systems. How to online optimize the FF path 
efficiently in terms of a specified cost index in a 
dynamic environment is always a challenging 
problem. Hu et al (2001), following the CDO 
strategy, reported an improved GA-based approach 
to attack this problem. Here most techniques reported 
by Hu et al (2001) are adopted, but in order to 
introduce the concept of RHC, the structure of 
chromosomes has to be modified, and the fitness 
function has to be re-defined by integrating terminal 
penalty. 
 
The structures of chromosomes for CDO_GA and 
RHC_GA are given in Fig. 3. The last way-point in a 
chromosome for CDO_GA is always the destination 
airport, while the last way-point in a chromosome for 
RHC_GA could be anywhere in the available 
airspace. According to Hu et al (2001), the flight 
time between any successive way-points (except the 
last two successive way-points) is a constant, i.e., a 
time interval. At first sight, the flight time associated 
with a chromosome for RHC_GA seems to be a 
constant, i.e., the length of receding horizon. 
However, after the mutation operation introduced by 
Hu et al (2001) to take shortcut, as illustrated in Fig. 
4, the new flight time is uncertain and usually shorter 
than receding horizon.  



    

     

Suppose the flight time t to the destination airport 
needs to be minimized. For CDO_GA 

ti ltt mT t= +                             (10) 

where t is the flight time associated with a potential 
FF path, Tti=10 minutes is the time interval, m is the 
number (integer) of time intervals, tlt is the flight 
time between the last two way-points. Since the last 
way-point in a chromosome for RHC_GA could be 
anywhere in the available airspace, if (10) is applied 
straightforward, then RHC_GA could never find an 
FF path leading to the destination airport, let alone 
minimizing the flight time. Let Plast(k), Pprev(k) and 
PD.A. denote the last way-point, the second last way-
point in a potential flight path, and the destination 
airport, respectively. To make RHC_GA work 
properly, a terminal penalty is necessary for 
modifying the fitness function  

)(kPtlTt twtiti ++= ,                     (11) 

3 4 1tw last D A GP k dis P k P vβ θ θ= + . .( ) ( | | / ) ( ( ), ) / ,   (12) 

where Ptw(k) is the terminal penalty, “dis” is a 
function calculating the distance between two way-

points, 3θ  and 4θ  are angles illustrated in Fig. 5, 

and 0β >  is a coefficient for tuning. 
3 0θ >  means 

the heading of the last sub-trajectory in a potential 
flight path is over-turning. Oppositely, 

3 0θ <  means 

under-turning. In either case, it will be penalized. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to evaluate RHC_GA, the simulation system 
reported in Hu et al (2001) is adopted to set up 
different FF environments, and the CDO_GA in Hu 
et al (2001) is also used for comparative purposes. 
Due to limited space, only the case of DD=2000 nms 
(Direct Distance from the source airport to the 
destination airport), the most complicated case in Hu 
et al (2001), is considered. The comparative 
simulation focuses on online computational times 

(OCTs) and actual flight times (AFTs) from the 
source airport to the destination airport.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1 shows the influence of N, the length of the 
receding horizon, on the performance of RHC_GA 
with terminal penalty defined by (12). If N is too 
small, the performance is very poor, as the case of 
N=1 and 3. If N is too large, OCTs increase, but the 
performance is not necessarily improved further. 
Instead, the performance could degrade due to 
unreliable information in a dynamic environment, as 
shown by the case of N=9. Compared with a time 
interval (10-minute-long), the OCTs in Table 1 can 
be ignored. Therefore, in the following simulation, 
N=6 is adopted since it gives the least AFT.       
  

Table 1  Influence of N on the RHC (second) 
        

             N=1         N=3         N=6         N=9 

OCT       1.26          2.27         8.88         17.74 
AFT      16922       16207      15932       16274 

 
Now, we compare RHC_GA with the CDO_GA in 
Hu et al (2001). Although RHC_GA is mainly 
proposed for dynamic process, it is still necessary to 
investigate its performance in a static environment. 
Table 2 gives the comparison results in both static 
case and dynamic case. From Table 2, one can see, 
the CDO_GA achieves the best performances, i.e., 
the least AFT, in static case. This is understandable, 
because, theoretically, in a static environment, CDO 
strategy should be the best in terms of performance. 
Table 2 also shows that the performance of RHC_GA 
in static case is very close to that of CDO_GA, which 
means the proposed RHC_GA works very well. In 
dynamic case, the performance of RHC_GA is better 
than that of CDO_GA. The reason for this has 
already been fully discussed in Section 3. As for 
OCTs, in either static case or dynamic case, 
RHC_GA provides reliable and promising real-time 
properties, while the CDO_GA seems struggling to 
meet the time limit of 600 seconds (a time interval).  
In inter-continental flights, DD is usually larger than 
2000 nms, and consequently requires more OCT for 
CDO_GA. This implies that CDO_GA is far away 
from the stage of practical implementations due to its 
long OCT. In the case of RHC_GA, as long as N is 
fixed, say N=6, the OCT is always a fraction of the 
time limit, no matter how large DD is. This means 
that the RHC_GA proposed in this paper is a real 
solution to the FF path optimization problem.   
 

Fig. 4. Zigzag path and shortcut 

Fig. 5. Terminal penalty in Eq. (12) 

 Fig. 3. Structure of chromosomes 

CDO_GA: 



    

     

Table 2  Comparison results (second)  
 
                         Static case               Dynamic case 
                 CDO_GA RHC_GA  CDO_GA RHC_GA 

Ave. OCT     77.54       7.30          68.92          8.88 
Ave. AFT     14868     14905        16192        15932 
Max. OCT    364.92    15.55         347.92       17.69 
Max. AFT    14913     15052         16638       16118 
 
 
4.2 Implementation to arrival scheduling and 

sequencing at airports 
 
Arrival scheduling and sequencing (ASS) is one of 
main concerns to improve the safety, capacity and 
efficiency of airports. Simply speaking, ASS is the 
function of generating efficient landing sequences 
and landing times for arrivals at the airport such that 
the safety separation between arrival aircraft is 
guaranteed, the available capacity at the airport is 
efficiently used and airborne delays are significantly 
reduced. The safety separation, i.e., minimum LTI 
(Landing Time Interval), between a pair of 
successive aircraft is a function of the type and of the 
relative positions of the two aircraft. By shifting 
positions of aircraft in the original landing sequence, 
it is possible to reduce delays and to improve the 
capacity of the airport. The position-shifting based 
ASS problem is an NP complete problem. Basically, 
GA is suitable for solving this problem. By following 
the methodology proposed in this paper, Hu and 
Chen (2005) reported a RHC based GA for the ASS 
problem, which employed a special terminal penalty 
and exhibited computational efficiency and robust 
performance when compared with CDO_GA. 
 
In this sub-section, we remove the special terminal 
penalty from the RHC_GA in Hu and Chen (2005) in 
order to further study its role in the ASS problem. 
Some simulation results are listed in Table 3, where 
one can see that the terminal penalty does not really 
matter in the ASS problem. This is understandable. 
By the nature of ASS problem, if the airborne delay 
related to the leading aircraft is small, then, 
generally, the delay related to the following aircraft 
is also small. In other words, if the airborne delay in 
each time interval is small, then the total delay of 
entire operating day is usually small. Because of this 
nature, one can remove the terminal penalty from the 
RHC_GA reported in Hu and Chen (2005). From 
Table 3, one can also see that, as N increases, the 
performance of RHC_GA improves at first, and then 
degrades when N is too large. 
   

Table 3 Influence of N and terminal penalty on 
RHC_GA 

 
Terminal penalty?   N=1  N=2  N=3  N=4  N=5  N=6 

             Delay (s)      142   139   136   138   148   151 
             OCT (s)        1.4     2.1   2.4    3.2    4.0    4.7 
             Delay (s)      142   138   136   137   145   152 
             OCT (s)        1.5     2.1   2.5    3.3    4.2    4.7 

 
 

5. CONCLUSIONS 
 
This paper presents a general methodology of genetic 
algorithm (GA) for real-time implementations in 
dynamic environments by integrating the concept of 
Receding Horizon Control (RHC). Some RHC 
practices in control engineering are introduced when 
designing this new GA, particularly how to choose 
receding horizon and terminal penalty. Two case 
studies are reported, which demonstrate how to 
effectively design an RHC based GA, and further 
show the computational efficiency and robust 
performance of the RHC based GA when it is applied 
in dynamic environments. 
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