
 

 

 

 

 

 

THE DESIGN METHOD OF ROBUST CONTROL BY FLEXIBLE SPACECRAFT 
 

 
V.Yu. Rutkovsky, S.D. Zemlyakov, V.M. Sukhanov, V.M. Glumov 

 
 

Institute of Control Sciences, Russian Academy of Sciences,  
Profsoyuznaya 65, 117997, Moscow, Russia 

Tel:+7(095)334 87 30;  e-mail : rutkov@ipu.rssi.ru 
 
 
 
 

Abstract: The problem of angular motion stabilization by mechanical systems with nonrigid 
construction is considered. The control is realized in the class of discrete systems with 
piecewise constant control actions which can lead to appearance and growth of the elastic 
oscillations of the object construction. The notion of the influence function of a base control 
on the elastic oscillations is introduced. Using this function the task of the subsystem forma-
tion of the intellectual diagnostics and tuning of the base algorithm is solved. Some results 
of digital simulation of the suggested method of control by multifrequency large space struc-
ture are given.       Copyright  2005 IFAC  
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1. INTRODUCTION AND STATEMENT OF 
THE PROBLEM 

 
There are many types of compound technical objects 
that require orientation of their position into space. 
The requirements for decrease of the metal expendi-
ture for their manufacture lead to elasticity of the 
construction. As the result they are flexible multifre-
quency objects. The typical examples of such objects 
are the large space structures (LSS) (Nurre, et al., 
1985),  (Kirk, (ed.), 1990, 1993, 1996, 1999), space 
and submarine robotic modules that have long ma-
nipulators links and long payloads. Such exotic ob-
jects as civil earthquake-proof multi-storied buildings 
on moving foundation belong to this class of the ob-
jects too (Spencer and Soong, 1999). 
 
The peculiarities of considered objects are the exis-
tence of a main rigid body containing sensors and 
actuators of the control system. Translational and 
rotational motions are defined by the coordinates  

and  of the body-fixed frame Oxyz in the inertial 
space. Attached to the main body additional elements 
or blocks can be flexible. Their positions are defined 
by finite number n of the generalized coordinates 

. First of all it must be noted that further the spe-
cific peculiarities of control by space vehicles are 
taking into account. But the most results are also true 
for all aforementioned objects. 
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Dynamics of the considered objects usually is de-
scribed by Lagrange equations that can be reduced to 
the following form of the finite-elements model 
(Nurre, et al., 1985)  
 

           ( )A q q Hq Bq Q R+ + = +  ,                  (1) 
 
where  is the ( ' vector of general-
ized coordinates that are defined the position and 
configuration of the flexible object  

;  A, B are the symmetric 

T T T
0 ad( , )q q q=

tT rT( , ) )Tq

1)n ×

( ' 6,n n= +
( ' ')n nq q ×  

matrices of the masses and rigidities; H is the 
')n -matrix of damping; Q K ( )q µ=

( )K q
 is the vec-

tor of generalized forces;  is the ( ' 6)n × -

matrix of the actuators effectiveness;  
is the vector of control actions;

 

tT rT T( , )µ µ µ=
t t t t T

1 2 3( , , )µ µ µ µ=  is 
the subvector of translational motion control and 

r r r r T
1 2 3( , , )µ µ µ µ=  is the subvector of rotational mo-
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tion control by the main body; ( , )R R q q=

0q

0

*

 is the 
vector of Coriolis and centrifugal forces. As a rule 
the components of the (6×1) vector  are the con-
trolled coordinates. Considered in this paper problem 
is retention of the vector coordinates q  in the do-
main of small displacements from their desired val-
ues . Small displacements of the vector com-
ponents q allow to use the linearized equation 

0
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Here ix  are the coordinates of the main body motion 

in the case if all construction would be rigid; ix

1,i

 are 
additional displacements of the coordinates xi due to 
the elastic oscillations of the attached flexible ele-
ments. The coordinates of the vector  
are considered as Euler angles. 

( ), 2,3 ,ix x= =

 

Separation (4) of the coordinates ix  permits to repre-
sent equation (3) in the following form   

               
*x Hx Bx K µ+ + =  ,                         (2)  

 
2; ; ;x Nm s s Gm x Ls x x xµ µω= + = = = + ,       (5)  

where T T T
0 ad 0 0( , ) , ,x x x q= ;  are 

constant matrices now. 

*K                     x x x= + ,                                          (6) 

where ( )js s=  is 1n× -vector of normal coordi-

nates; 2 2( ),j 1, ;diag j nω ω= = jω  are fundamental 
frequencies of the elastic oscillations of the object; 

1Km Jµ µ−= ; 11 22( ,J J 33, J )J diag= ; 
1

11N A J−= ;        
L and G are the matrices defined in (Glumov, et al., 
1998). 

Very often it is possible to assume that in equation 
(2) the components of the matrices defining transla-
tional and rotational inter-motion coupling are small. 
It is valid in the motion of the object into space or in 
the motion underwater at low velocities. In this case 
the term x  is small too. Then equation (2) is di-
vided into two analogous systems that in the first 
approximation are independent. Each system after 
some transformations has the following form 

 
If gas-jet engines or hand-wheels are used as control 
devices the system of equations (5) may be divided 
into three independent modal-physical models 
(MPM) (Glumov, et al., 1998) each of that represents 
the object rotation ix , 1,3=i , with respect to any of 
three orthogonal axes of the inertial coordinate sys-
tem (further subscript  i will be omitted). 
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where t t
0 ad ad, ,x x x x µ= =

r r
0 0 ad ad,x x x x

 for translational 

motion and = =
t

ij ij

 for rota-
tional motion. A A= ij or A = , , and , 2

K =  or rK K=  are the sub-matrices of the matri-
ces A* and K*. 

 
In the scalar form MPM is written as follows: 
 

:M 2

1

, , ,
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j j j j
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(7) 

   
For definiteness in this paper rotational motion of the 
object is considered. A solution of the task of the 
algorithms synthesis of energy economic and robust 
control by nonrigid objects described by equation (3) 
is suggested. The requirement to have economic con-
trol is defined by limited store of the energy for con-
trol under condition of long-duration operation of 
spacecrafts on the orbit. The requirement to have 
robust control is defined by the fact that it is impos-
sible to calculate the exact values of the flexible 
spacecraft parameters under earthly conditions. 

The object output x x x= +  is measured by angular-
rate sensor with digital output z z z= +  where 

[ ]z x k= , [ ],z x k k=  is discrete time. 
 
 

3.  THE CHARACTERISTICS OF THE  
REGULATORS INFLUENCE ON THE  

ELASTIC OSCILLATIONS 
 

As distinct from (Krutova, 2001) let us introduce the 
notion “model of the regime's set of the dominant 
mode” instead of the set of autonomous models of 
the isolated elastic modes. It is defined as MPM 

, ( 1, )d d j n∈ =M  in scalar form (7) and it is distin-
guished by particular combination of the vector com-
ponents initial conditions values 0 0( )jx x= , when 

0 0 0jdx x j d≈ ∀ ≠  and 0 0,x x 0≥ . This model 

 for brevity is called as the model of the object's  

d-regime (
dM

1,d n= ).  

 
 
2.    TRANSFORMATION OF THE OBJECT’S 
MODEL TO THE MODAL-PHYSICAL FORM 
 
As the first step of the suggested method of designing 
control system is the transformation of the equation 
(3) to the modal-physical form (Glumov, et al., 
1998). For that the coordinates xi  of the vector x are 
represented as the sum of two components 
 

Further the discrete control systems that are widely 
applied for space objects are considered. In such sys-
tems the steady-state motion is represented by a sta-

       
1

,
n

j
i i i i i jx x x x

=

= + =∑ ,  .           (4) 

 



ble limit cycle Γ=  with period [ ( , )]vu z rΓ τΓ  and 
admissible amplitude. The influence of the control 
action  on the oscillating component [ ( ,m u z )]vr

( )dx t  of the model M  can be determined with the 

help of a quasi-envelope 
d

( ,d vt r ) [ ( ), )]d vEnv x t( ,u z rρ =
)

 

of the transient process of the component (dx t  on 
the time interval aτ  (active interval) belonging to the 
limit cycle period τΓ [ when ] 0≠m u . This envelope 
can be defined by the function 
 

                  .                (8) ( )( , ( )) d v
d d v

r tt r aeλρ λ =

In designing control system envelope (8) is 
calculated without trouble using equations (7). But 
the frequecies jω  can not be known exactly and 
moreover they can change during the active life of 
the object. So it is necessary to have the method of 
envelope (8) calculation in the process of the object 
operation. In this case the following method can be 
suggested.  According to this method a set 

{ [ ]}sZ z k=  is used. It can be obtained for example 
by processing of the coordinate  by the method 
of Kalman filtration (Ermilova, et al., 2004).  

[ ]z k

 
The outputs of the Kalman filter are [ ]z k  and [ ]z k

[ ]z k
. 

But it is appropriate to obtain the component  as 
the difference [ ] [ ] [ ]z k z k z k= −  since the compo-
nent [ ]z k  on the Kalman filter output converges 
more quickly and more accurately in compare with 
the component . Moreover the component  
on the Kalman filter output contains only some 
modes of the elastic oscillations. Further the opera-
tion of rectification, 

[ ]z k [ ]z k

[ ] [ ]az k z k=  is used with sub-

sequent selection of all maximum values  . The 
set 

[ ]lmz

sZ  is transformed into the set { [ ]m }mZ z l=  
jointly with the set of the correspondent instants 

. Defined by the sets { }=mT l ,m mZ T  the function 
{( , ) | ( )}mm m mf l z

( )P t

T Z

)

z f l× == ∈

( 1p t l

 is subjected to 
two-stage approximation. At the first stage this func-
tion is replaced by the approximating polynomial 

0

q
ν

ν

0( )

ν=
∑

l

0

a

=

1

−

( )d vr

, where  are constant coeffi-

cients,  is the first element of the set T . Approxi-
mation is realized by the method of least squares and 
function “Polifit” in MATLAB. The second stage is 
the procedure of minimization of the functional 

νp

2
( )

m

J P e P dλ

τ

τ

λ ττ τ τ− = ∫ . Calculated the value 

( )d vrλ  defines the rate of the component dx  ampli-
tude changing. The sign dλ  defines the character of 
the oscillating process: at 0dλ <  it converges 

( ( ,d v ) dx r t x−∈ 0); at dλ >  it diverges ( ( ,d v ) dx r t x+∈ ). 

If ( ) 0d vrλ ε≤ →  then for [ ( )] 1d vsign rλ = ±  the 
regulator affects on the elastic component weakly 
( 0( , )d v dx r t x∈

vr
). So for any constant value r  of the 

parameter  the influence of the regulator on the 
oscillating component 

*

( )dx t  of the model  can 
be defined by the single number . Vary-

ing the parameter , repeating for any new value 

dM

* ( )d d rλ λ ∗=

vr rν  
computer simulation of the object stabilization re-
gime with the model  and calculating the index 
of the quasi-envelope 

dM

dλ  some influence function 

( )d d vrλ λ=  will be obtained. This function reflects the 

influence of the base algorithm on the elastic 
oscillations for d-regime. The totality of the influence 
functions 

( , )vu z r

{ (d d )}vrλΛ =  ( 1,=d ) is used further as an 
informational index for the subsystem of the intellec-
tual diagnosis (Dubrovin, et al., 2003) of the oscillat-
ing component condition.  

n

( ),d vr d 1,3λ =

0

0 1,5v s≡ ≤

1,vr >

i

5s

x

iω

ik

 
The example of limited number of the influence 
functions  , for the LSS and discrete 
analog of PD-algorithm stabilization with a discrete-
ness period Т0 (Krutova, 2001) (within period T  
control action m = const) is shown in Fig. 1. The co-
efficients of model (7) for n = 6,  I=2500 kgm2 , 
I0=167 kgm2 are indicated in Table 1. 

Table 1. 
 

 i=1 i=2 i=3 i=4 i=5 i=6 

fi   [ Hz] 1.3 1.6 1.9 2.2 2.5 3.2 
 8.17 10.05 11.94 13.82 15.7 20.1 

 8.5 5.6 4.8 1.5 0.4 0.2 

 
Analysis of the influence functions makes it possible 
to select two domains of active ( r T ) and  
 

 
Fig.1. Totality of the influence functions. 
 
neutral ( ) influence of the regulator on the 
elastic oscillations. And it is clear in what domain of  

 



varying parameter  one of the dominant modes 
( d ) is the cause of the LSS motion instabil-
ity.  

vr
1, 2,3=

The task of the influence functions ( )d vrλ  analysis 
can be considered as a prediction of possible critical 
regimes of the LSS dynamics (hunting phenomenon 
of the regulator by the elastic oscillations and others 
(Rutkovsky and Sukhanov, 1973)). These functions 
can be used both in designing control system and for 
realization of robust control by the object (tuning of 
the parameter vr  during the flight). The most 
interesting task is the last one. 

]

 
Let in the system under influence of the control ac-
tion  , (  is the nominal 
value of the tuned parameter) d-regime occur which 
is estimated using the set 

0[ ( , )]m u z r 0 min max[ ,r r r∈

m { [ ]}mZ z l= . It is re-
quired: 

1.  To define the number "d" of the dominant mode 
on the basis of the frequency ,d n= , 
identification proced

dω , 1
ure;  

2. Using the number "d" it is necessary to choose 
from the totality { ( )}d d vrλΛ =  that are stored in the 
computer the influence function ( )d vrλ  and to de-

fine new value r r  with regard to neces-
sary ( si

min max[ ,r∈

1[ ( )] 1d r
1 ]

gn λ =−

1 1[ , ]r r r− +∈

1[ ( , )]z r

) and sufficient 
( ) conditions at which the 

control action m u  guarantees maximum 

rate of the dominant mode damping. Here r

1 m( ) ( )d drλ λ i= ∀n

1 1, r− +  
are the boundaries of the domain in which neces-
sary condition (

1( ) 0d rλ ≤ ) of the component ( )dx t  
damping is fulfilled.  

 
The solution of this task realizes the synthesis proce-
dure of the subsystem of the base algorithm adaptive 
tuning. The goal of this tuning is the dominant mode 
damping without additional energy consumption. 
 
 

4. DESIGNING SUBSYSTEM OF THE BASE     
ALGORITHM PARAMETER TUNING 

 
In the synthesis of the subsystem of the varying pa-
rameter  tuning the sets vr mZ  and  are used. The 
values 

mT
( , )d vt rλ  are obtained with the help of de-

scribed method of the oscillating component  
quasi-envelope construction. This procedure is real-
ized at each active interval 

z

aτ  of the limit cycle. In 
the regime of the dominant mode the values of the 
most differences  of the 
adjacent elements of the set T  are coincides 
approximately with semi-period 0,

[ ] [ ] 1]}mt j t l∆ = −

m =
{m m [t l−

{ }l
5 j dτ  of the oscil-

lating component that has the maximum amplitude. 

After the operation of averaging 1

1

2 [ ]
1

L

d m
j

t j
L

τ
−

=

= ∆
− ∑  , 

dim mL T=  , the frequency of the dominant mode 
12d dω π τ −=  is defined. For identification of the 

dominant mode number "d" the differences 

j dω ω∆ = −ω  ( 1,j n= )

j

are investigated and it is 

accepted that d =  from the condition 
mid j

ω = nj jω ω∆ = − . Further using the number "d" of 

the dominant mode it is necessary to choose the cor-
responding influence function ( )d vrλ . If 0( ) 0d rλ >  it 
is required to select the new value of the parameter 

 as it was written earlier. In the case when at vr

0vr r=  the index 0( )d r 0λ ≈  the intensity of the oscil-
lating process ( )x t  can be high or low (the ampli-
tude of the dominant mode can be large or small). 
High intensity can lead to instability of the object 
motion. Because of this, intensity of the oscillating 
process is estimated by the mean value mz  of the set 

mZ  elements. The mean value mz  is compared with 

the admissible value *
mz  and if *

mmz z>  the tuning 

(selection) of the parameter r  must be realized. If v
*

m mz z≤   the tuning of the parameter r  is not 
required. 

0v r=

00 1r T≡ =

1λ ( )t
( ) 1t =

1( ) 0tλ > ,t ( )d t z

mz
[ ]z k

20a sτ = aτ

Fig. 2. Base regime of the LSS stabilization  and  
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       outputs of the information module. 
 
In Fig. 2 the example of the base control realization  
(n = 6) is shown.  
 
Discrete analog of the PD-algorithm at  
was used. It is clear that signals ( )t  and d  indi-

cate the presence of the dominant mode d  and 
its divergence ( ). Signals 1( )λ  and m  

(signal  in Fig.2 is not depicted) were obtained by 
processing of the coordinate  on the active parts 
( ) of the limit cycle. At t >  the signals 

( )d tλ ,  and (d t) mz  are retained fixed until the end 
of the current limit cycle.  

s

 



u

vr∆

Object 
 

Digital sensor 
x

Base algorithm 
( , )vu u z r=  Control device  

[ ]z x k=

m

z

( )d rνλ

Search algorithm  
of  optvr   

(precise tuning of  vr )

Kalman 
filter   

Information module of the subsystem of 
diagnosis and tuning of the parameter vr  

( )d t

vr

mz

Data base 
{ ( )}d d vrλΛ = ,  mz ∗

 

and subsystem of   vr  
rough tuning 

- zAnalogue-digital 
converter 

[ ]m k

Fig. 3.  Block scheme of the control system. 

By this means the suggested system has three loops. 
Its block-scheme is shown in Fig. 3. 

 Described procedure of the parameter  tuning is vr
realized on-line using logical operations and the in-
fluence functions. This tuning is quick but rough. As 
a rule the new value  is not equal to its optimal one 

 for that  because 
the  

1r
( )opt1 optr 1 1min [ ,d vr r rλ λ − += ∀ ∈ 1 ]r

The first, main, loop consists of the object, the ana-
logue-digital converter, the control device and com-
puter that realize the base algorithm. The main loop 
guarantees required quality of control at all values of 
the parameter min max[ ,vr r r ]∈  provided that the elas-
tic oscillations ( )x t

d

 are small. Information module of 
the subsystem of diagnosis and tuning of the parame-
ter  estimates the index vr λ  , number of the domi-

nant mode ''d" and the index mz  using the elastic 
component . The second loop realizes the rough 

tuning of the parameter  and the third one realizes 
the precise tuning of this parameter.  

[ ]z k

vr

influence functions are calculated in the process of 
the control system designing on the basis of designed 
parameters of the elastic oscillations. So it is appro-
priate to have an optimal subsystem for precise tun-
ing of the parameter r . v

 

Fig. 4.   Dynamics of the LSS stabilization process. 
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For that one of the well-known algorithms of an ex-
tremum search (Krasovsky (ed.), 1987) may be used. 
In our case the minimum of the index ( )d vrλ  in the 
domain  is taken to be the extremum. In 
the optimal subsystem the test signal  is generated 
and real index 

1 1[ , ]vr r r− +∈

(d r
vr∆

)vλ  is calculated in the information 
module. The search is completed when min( )d rνλ λ= . 

After that the value 
 
 is remained constant and 

the dominant mode amplitude is decreasing with 
maximum rate. But the amplitudes of other modes 
can increase as long as one of them will become as 
the dominant one. In this case the process of the pa-
rameter  rough tuning is recurred. 

optrν

vr

 
 

5. COMPUTER SIMULATION OF THE  
SUGGESTED SYSTEM 

Suggested system was reproduced in MATLAB-
Simulink taking into account nonlinear characteris-
tics of the attitude sensor and control device. The 
values of the object parameters are depicted in the 
Table 1  (n = 6). 
And it was assumed that the fundamental frequencies 
and coefficients of excitability can be given with the 



 errors (about 20 %). The discrete PD-algorithm 
(Krutova, 2001) with varying parameter 0vr T≡  was 
chosen as the main algorithm of the stabilization. The 
initial conditions of the stabilization regime with re-
spect to the «rigid» motion were: 

0 00, 005 rad , 0x x= =  and T . At that the first 
mode was as the dominant one. Other five modes 
have relatively small amplitudes.  

0 1=
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