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Abstract: This article studies the telegrapher’s equations with boundary port
variables. Firstly, a link is made between the telegrapher’s equations and a skew-
symmetric linear operator on a spatial domain. Associated to this linear operator is
a Dirac structure which includes the port variables on the boundary of this spatial
domain. Secondly, we present all partitions of the port variables into inputs and
outputs for which the state dynamics is dissipative. Particularly, we recognize the
possible input-outputs for which the system is impedance energy-preserving, i.e.,
1
2

d
dt ‖x(t)‖2 = u(t)T y(t), as well as scattering energy-preserving, i.e.,12

d
dt ‖x(t)‖2 =

‖u(t)‖2 − ‖y(t)‖2. Additionally, we show how to represent the corresponding
system as an abstract infinite-dimensional system, i.e., ẋ(t) = Ax(t) + Bu(t) and
y(t) = Cx(t) + Du(t). Copyright c©2005 IFAC
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1. INTRODUCTION

The description of any system consists of two
distinct parts: A description of the nature of the
elements in the system and a definition of the
geometric structure of the interconnection of these
elements. In this paper, this geometric structure
is described by a Dirac structure. The key point of
this approach is the definition of power conjugated
variables called flows (e.g., velocities, currents)
and efforts (e.g., forces, torques, voltages).

In order to model any physical system it is nec-
essary to define the system boundary, since the
interaction with the environment is done through
this. Here we study the telegrapher’s equations
with boundary ports. This paper describes how
to define those port variables so that the state dy-
namics of the resulting system is dissipative. Also,
it is shown how to select inputs and outputs from
these port variables. The main idea is to param-
eterize the inputs and outputs by the selection of
certain matrices. Corresponding to that selection
one can obtain systems with different properties.

Here we use the following notation; ( X
Y ) for X×Y

and F|D denotes the restriction of an operator
F to the subspace D. Also, D′ denotes the dual
space of D. HN ((a, b); Rn) denotes the space of N-
times differentiable L2((a, b); Rn) functions and ∂v

denotes the partial derivative with respect to v.

2. BOUNDARY CONTROL SYSTEMS (BCS)

The class of BCS described here is based on (Curtain
and Zwart, 1995, §3.3). That is, BCS of the form

ẋ(t) = Ax(t), x(0) = x0,

u(t) = B x(t),
(1)

where A : D(A) ⊂ X → X, u(t) ∈ U , a
separable Hilbert space, the boundary operator
B : D(B) ⊂ X → U satisfies D(A) ⊂ D(B), and

Definition 1. The control system (1) is a boundary
control system if the following hold:



a. The operator A : D(A) → X with D(A) =
D(A) ∩ ker(B) and

A x = Ax for x ∈ D(A)

is the infinitesimal generator of a C0-semigroup
on X.

b. There exists a B ∈ L(U,X) such that for all
u ∈ U , Bu ∈ D(A), the operator AB is an
element of L(U,X), and BBu = u for u ∈ U .

As an example we can consider the transmission
line with length L = b − a. Kirchhoff’s laws
describing the transmission line are given by

fφ = −∂eq

∂z

fq = −∂eφ

∂z
.

(2)

These equations are known as telegrapher’s equa-
tions. Here, z ∈ [a, b] is the spatial variable, fq

is the rate of charge density, eq = Q
C is the

distributed voltage, eφ = φ
L is the distributed

current, fφ is the rate of flux density, and Q and
ϕ are the charge density and the flux density,
respectively. The boundary variables are

eφ(a) = fL, eq(a) = eL

eφ(b) = fR, eq(b) = eR.
(3)

The total energy (Hamiltonian) stored at time t
is given by

H(Q,ϕ) =
∫ b

a

1
2

(
Q2(t, z)
C(z)

+
ϕ2(t, z)
L(z)

)
dz, (4)

where the energy variables are Q and ϕ. Observe
that fφ = ∂Q

∂t and fq = ∂ϕ
∂t . The resulting energy-

balance is, see (van der Schaft and Maschke, 2002)

dH
dt

= −eφ(t, b) eq(t, b) + eφ(t, a) eq(t, a). (5)

Observe that the system above does not have a
defined input. We have only defined boundary
variables. In this paper we study how to decom-
pose the boundary variables so that the input is a
linear combination of these variables and that the
resulting system is a BCS with total energy H.

3. DIRAC STRUCTURES AND PORT
HAMILTONIAN SYSTEMS (PHS)

Let the space of flow variables, denoted by F , and
the space of effort variables, denoted by E , be real
Hilbert spaces endowed with the inner products
〈. , .〉F and 〈. , .〉E , respectively. Assume moreover
that F and E are isometrically isomorphic. Define
now the space of bond variables as the Hilbert
space B = F × E endowed with the natural inner
product: 〈

b1, b2
〉

=
〈
f1, f2

〉
F +

〈
e1, e2

〉
E

for all b1 =
(
f1, e1

)
∈ B, b2 =

(
f2, e2

)
∈ B.

In order to define a Dirac structure, we endow

the bond space B with a canonical symmetrical
pairing, i.e., a bilinear form defined as follows:

〈b1, b2〉+ = 〈R b1, b2〉F×E (6)

where b1, b2 ∈ B and R is a fundamental sym-
metry (Dritschel and Rovnyak, 1996, p. 4) for B.
Now we may define a Dirac structure on the bond
space B by using this canonical pairing. Denote
by D⊥ the orthogonal subspace to D with respect
to the symmetrical pairing (6):

D⊥ = {b ∈ B | 〈b, b′〉+ = 0, ∀ b′ ∈ D} . (7)

Definition 2. (van der Schaft and Maschke, 2002).
A Dirac structure D on the bond space B = F×E
is a subspace of B which satisfies

D⊥ = D. (8)

The definition of a port Hamiltonian system is
based on the definition of two objects: the inter-
connection structure given by a Dirac structure
and the Hamiltonian function representing the
total energy of the system.

Definition 3. Let B = F × E be defined as above
and consider the Dirac structure D and the Hamil-
tonian function H(v), where v contains the energy
variables. Define the time variation of the energy
variables as the flow variables, f ∈ F , and the
variational derivative of H as the effort variables,
e ∈ E . Then the system

(f, e) ∈ D, (9)

is a port Hamiltonian system with total energy H.

For more information on Dirac structures and
PHS we refer to (van der Schaft and Maschke,
2002) or to (Le Gorrec et al., 2004) and the
references therein.

The transmission line is an example of a PHS,
with v = (Q,φ) being the energy variables, H is
given by (4), f = (fφ, fq) and e = (eφ, eq) with
respect to a Dirac structure induced by a (skew-
symmetric) differential operator defined in (2). In
fact, in the next section we show how any skew-
symmetric differential operator defines a Dirac
structure.

4. DIRAC STRUCTURE ASSOCIATED WITH
A SKEW-SYMMETRIC OPERATOR

Observe from equation (2) that the flows, f , and
efforts, e, are connected through a (differential)
operator. Furthermore, from Definition 3 one can
see that this efforts and flows describe the dynam-
ics of a system and at the same time they belong
to a Dirac structure. That is why we associate a
Dirac structure with a differential operator. This
section presents some results given in (Le Gor-
rec et al., 2004), which will be used throughout
this paper. In that paper, the authors define a
Dirac structure which includes the boundary port



variables associated with a skew-symmetric linear
operator of the form

J e =
N∑

i=0

Pi
die

dzi
(z) z ∈ [a, b] , (10)

where e ∈ HN ((a, b); Rn) and Pi, i = 0, . . . , N , is
a n×n real matrix with PN nonsingular. Since J
is assumed to be skew-symmetric we get

Pi = PT
i (−1)i+1. (11)

Here we study the case when N = 1 since this
case includes the telegrapher’s equations. The
boundary port variables can be chosen as follows.

Definition 4. The boundary port variables associ-
ated with the differential operator J with N = 1
are the vectors e∂ , f∂ ∈ Rn, defined by(

f∂

e∂

)
= Rext

(
e(b)
e(a)

)
, (12)

where the nonsingular matrix Rext is given by

Rext =
√

2
2

(
P1 −P1

I I

)
. (13)

Consider the effort and flow space E = F =
L2((a, b); Rn)×Rn with their natural inner prod-
uct. Define the bond space B as F × E with the
canonical symmetrical pairing〈(

f1, f1
∂ , e1, e1

∂

)
,
(
f2, f2

∂ , e2, e2
∂

)〉
+

=

〈e1, f2〉L2 + 〈e2, f1〉L2 − 〈e1
∂ , f2

∂ 〉 − 〈e2
∂ , f1

∂ 〉,

where
(
f i, f i

∂ , ei, ei
∂

)
∈ B, i = {1, 2}.

Theorem 5. The subspace DJ of B defined as

DJ =


 f

f∂

e
e∂

 ∣∣∣ e ∈ H1((a, b); Rn),J e = f,

(
f∂

e∂

)
= Rext

(
e(b)
e(a)

)}
(14)

is a Dirac structure.

From the Dirac structure and the Hamiltonian we
define systems such that e becomes the state, f
becomes the change of the state with respect to
time and the Hamiltonian is the energy of the
system, see Definition 3. Moreover, inputs and
outputs of the system are linear combinations of
the port variables (12). Here, inputs will be chosen
so that the state dynamics of the resulting system
is dissipative. Note that here the term input is
used in the same philosophy as in behavioral sys-
tems theory, see (Willems and Polderman, 1998).
However, for technical reasons it is not exactly
the same. In this paper the input is assumed to
be smooth, i.e., u ∈ C2((0,∞); RnN ), whereas in
behavioral systems the input is usually assumed
to be in Lloc

1 . The following theorem is taken
from (Le Gorrec et al., 2004).

Theorem 6. Let W = S ( I + V, I − V ), with S
invertible and V V T ≤ I, be a full rank matrix of
size n× 2n. Define B : H1((a, b), Rn) → Rn as

Bx(t) := W

(
f∂(t)
e∂(t)

)
. (15)

Then the system

ẋ(t) = J x(t),

Bx(t) = u(t)
(16)

is a boundary control system, where AW = J| kerB
is the generator of a contraction semigroup on
L2((a, b), Rn) with

D(AW ) = {x ∈ H1((a, b), Rn) |
(

f∂

e∂

)
∈ ker W}.

Furthermore, if we define the linear mapping C :
H1((a, b), Rn) → Rn as

Cx(t) := S2

(
I − V T , −I − V T

) (
f∂(t)
e∂(t)

)
(17)

with S2 invertible and the output as

y(t) = Cx(t), (18)

then for u ∈ C2((0,∞); Rn) and x(0) − Bu(0) ∈
D(AW ) the following balance equation is satisfied:

1
2

d

dt
‖x(t)‖2 =

(
uT (t) yT (t)

)
PW

(
u(t)
y(t)

)
, (19)

where PW is given by
1
4

(
S−T (P̃ 2

1−P̃1V V T P̃1)S
−1 −2S−T P̃1V P̃2S−1

2

−2S−T
2 P̃2V T P̃1S−1 S−T

2 (−P̃ 2
2 +P̃2V T V P̃2)S

−1
2

)
,

(20)

and P̃1 = (I + V V T )−1, P̃2 = (I + V T V )−1.

Observe that for the systems considered in the
theorem above we have that the Hamiltonian H
is given by 1

2‖x(t)‖2 and the energy-balance d
dtH

is the energy exchanged at the boundary (compare
with equation (5)).

5. TELEGRAPHER’S EQUATIONS WITH
BOUNDARY PORTS

Consider the telegrapher’s equations described in
Section 2, see (2)-(3). Recall that z ∈ [a, b] is the
spatial variable.

Observe that equations (2) can be rewritten as
follows

J e =
1∑

i=0

Pi
die

dzi
(z) = P1

de

dz
(z), (21)

where P0 = 02×2,

P1 =
(

0 −1
−1 0

)
, and e =

(
eφ

eq

)
. (22)

Following equations (10) and (11) we can see that
the telegrapher’s equations fit into the framework
described in Section 4. Thus from Definition 4, the
port variables can be chosen as



(
f∂

e∂

)
=
√

2
2

(
P1 −P1

I I

) (
e(b)
e(a)

)

=
√

2
2


eq(a)− eq(b)

eφ(a)− eφ(b)

eφ(a) + eφ(b)

eq(a) + eq(b)

 =


f∂1

f∂2

e∂1

e∂2

 , (23)

where equation (22) was used. The problem is now
the selection of inputs and outputs from these port
variables.

In (Le Gorrec et al., 2004) the authors show
that the kernel of the matrices W in Theorem 6
give necessary and sufficient conditions for the
differential operator AW in Theorem 6 to be the
infinitesimal generator of a contractive semigroup.
Observe that once W is chosen the matrices S and
V can be obtained from W as follows

S =
1
2
(W1 + W2), V = (W1 + W2)−1(W1 −W2)

(24)
where W is partitioned as W = ( W1 W2 ) with
Wi, i = 1, 2, square.

Thus, for a given input there corresponds a matrix
W . If this matrix satisfies the conditions in The-
orem 6, then we know that the state dynamics is
dissipative.

Example 7. Consider the system (2)-(3). Assume
that we want to have the input u =

(
eq(b)
eφ(a)

)
.

Since the input is defined from the port variables
described in equation (23), we can rewrite u as

u =
(

eq(b)
eφ(a)

)
=

1
2

(
−(eq(a)− eq(b)) + (eq(a) + eq(b))
(eφ(a)− eφ(b)) + (eφ(a) + eφ(b))

)
=
√

2
2

(
−f∂1 + e∂2

f∂2 + e∂1

)
and since we have to formulate it as W

(
f∂
e∂

)
,

see (15), we see that W is given by

W = ( W1 W2 ) =
√

2
2

(
−1 0 0 1
0 1 1 0

)
. (25)

From (24) we get

S =
√

2
4

(
−1 1
1 1

)
and V =

(
0 1
−1 0

)
. (26)

Using this V together with (23) in equation (17)
we get that the possible outputs are described by

y =
√

2 S2

(
−eφ(b) + eq(a)
−eφ(b)− eq(a)

)
,

where S2 is any nonsingular matrix.

Example 8. Consider the system (2)-(3). Now as-
sume that we have the input u = 1

2

(
eq(b)−eφ(b)

eφ(a)+eq(a)

)
.

The matrix W that corresponds to this input is

W =
√

2
4

(
−1 1 −1 1
1 1 1 1

)
.

From (24) we get

S =
√

2
4

(
−1 1
1 1

)
and V =

(
0 0
0 0

)
.

Using this together with (23) in equation (17)
gives that the possible outputs are described by

y = S2

(
eq(a)− eq(b)− (eφ(a) + eφ(b))
eφ(a)− eφ(b)− (eq(a) + eq(b))

)
,

where S2 is any nonsingular matrix. One can
see that although S2 gives some freedom in the
selection of the output y, the set of possible
outputs is now restricted.

It is easy to see that once an input is chosen,
the selection of possible outputs is bounded by
that choice. However, the choice of an input is not
completely free, since it is restricted by the fact
that W has to satisfy the condition in Theorem 6.

Note that one is not only allowed to choose an
input and output, but also one can shape the
energy to satisfy some conditions or relations.
This will be shown in the following two sections.

6. OBTAINING AN IMPEDANCE
ENERGY-PRESERVING SYSTEM

Here we use the term ‘impedance energy-preserving
system’ in the sense of (Staffans, 2002). In that pa-
per the author shows that an impedance energy-
preserving system satisfies the relation

1
2

d

dt
‖x(t)‖2 = u(t)T y(t)

for u ∈ C2((0,∞); RnN ) and x(0) − Bu(0) ∈
D(AW ). Following equation (19) we see that in
this case we must have that

PW =
1
2

(
0 I
I 0

)
.

Comparing this with equation (20) one can con-
clude that V V T = I, P̃1 = P̃2 = 1

2I, and
S−T

2 V T = −4S. This means that W must have
the form W = 1

4S−T
2

(
−I − V T I − V T

)
(com-

pare with (17)). Thus the inputs will be

u =
1
4
S−T

2

(
−I − V T I − V T

) (
f∂

e∂

)
(27)

and the outputs are

y = S2

(
I − V T −I − V T

) (
f∂

e∂

)
. (28)

Furthermore, it can be shown that if the type of
systems described in Theorem 6 are impedance
energy-preserving, then they are always conserva-
tive, this means that the adjoint system is also
impedance energy-preserving.



It can be easily shown that the matrices S and
V in Example 7 satisfy the conditions above,
and hence one can conclude that the system
is impedance energy-preserving if the output is
chosen as (28) with S2 = − 1

4S−T V .

7. OBTAINING A SCATTERING
ENERGY-PRESERVING SYSTEM

Here we use the term ‘scattering energy-preserving
system’ in the sense of (Staffans, 2002). In that
paper the author shows that a scattering energy-
preserving system satisfies the relation

1
2

d

dt
‖x(t)‖2 = ‖u(t)‖2 − ‖y(t)‖2

for u ∈ C2((0,∞); RnN ) and x(0) − Bu(0) ∈
D(AW ). Following equation (19) we see that in
this case we must have that

PW =
(

I 0
0 −I

)
.

Comparing this with equation (20) we can con-
clude that V = 0, P̃1 = P̃2 = I, S−T S−1 = 4I,
and S−T

2 S−1
2 = 4I. This means that W has the

form W = S ( I I ). Thus, from Theorem 6 and
equation (23) we can conclude that the set of
possible inputs is described by

u =
√

2
2

S

(
eq(a)− eq(b) + eφ(a) + eφ(b)
eφ(a)− eφ(b) + eq(a) + eq(b)

)
where S must satisfy S−T S−1 = 4I. Observe that
now the output is restricted to

y = S2

(
eq(a)− eq(b)− (eφ(a) + eφ(b))
eφ(a)− eφ(b)− (eq(a) + eq(b))

)
where S2 satisfies S−T

2 S−1
2 = 4I. In (Villegas et

al., 2005) it is shown that a system described by
the telegrapher’s equations with this type of input
and output is exponentially stable.

Observe that in Example 8 the matrix S satisfies
S−T S−1 = 4I, hence choosing any matrix S2

satisfying the same condition gives a scattering
energy-preserving system.

8. REPRESENTATION AS AN
INFINITE-DIMENSIONAL SYSTEM

Many finite- and infinite-dimensional linear sys-
tems can be described by the equations

ẋ(t) = A x(t) + B u(t), x(0) = x0

y(t) = C x(t) + D u(t), t ≥ 0, (29)

on the Hilbert spaces, namely, the input space U ,
the state space X and the output space Y , where
u(t) ∈ U , x(t) ∈ X and y(t) ∈ Y . The operator A
is generally the generator of a C0-semigroup. The
system node (see (Staffans, 2004), (Malinen et al.,
2003, §2)) has been introduced as a generalization

of this set of equations. Roughly speaking the
system node can be thought of as the block
operator S =

(
A&B
C&D

)
from X×U to X×Y , which

allows to replace equation (29) by(
ẋ(t)
y(t)

)
= S

(
x(t)
u(t)

)
, t ≥ 0, x(0) = x0.

Hence it is more general than (29). One of the
main properties of the system node is that it is a
closed operator. Also,

Ax := A&B

(
x
0

)
with D(A) :=

(
x
0

)
∈ D(S)

generates a C0-semigroup. See (Staffans, 2004)
or (Malinen et al., 2003, §2) for a proper definition
of the system node.

In this section we show how to represent the
telegrapher’s equations as a system node. To do
this we first need some results, which are taken
from (Villegas et al., 2005).

Theorem 9. Consider the system (16) with

J e = P0 e(z) + P1
de

dz
(z)

and output (17). Let Ae be the extension of J
to the state space X = L2((a, b); Rn) and AW be
the restriction of J to D(AW ) (see Theorem 6).
Then this system can be described as a system
node with A&B = [Ae Bnode]|D(S),

D(S) =
{(

x
u

)
∈

(
X
U

) ∣∣∣∣ x−Bu ∈ D(AW )
}

,

C&D

(
x
u

)
= S2

(
I − V T −I − V T

) (
f∂

e∂

)
= S2

(
I − V T −I − V T

)
Rext

(
x(b)
x(a)

)
,

and Bnode is given

< x |Bnode u >D(A∗
W

),D(A∗
W

)′

= −〈A∗
W x,B u〉+ 〈x,JB u〉, (30)

where B is introduced in Definition 1.

Example 10. Consider the transmission line (2)-
(3) with boundary port variables (23). Observe,
from Theorem 9, that the state vector is

x = e =
(

eφ

eq

)
=

(
x1

x2

)
(see (22)). (31)

The operator J is given by (see equations (21)
and (22))

J =
(

0 −∂z

−∂z 0

)
(32)

with P0 = 0 and D(J ) = H1((a, b); R2). From
Theorem 6 we know that if W has the form
W = S ( I + V, I − V ), with S invertible and
V V T ≤ I, then the operator J restricted to

D(AW ) = {x ∈ H1((a, b), Rn) |
(

f∂

e∂

)
∈ ker W}

(33)
generates a C0-semigroup, i.e., ẋ(t) = AW x(t)
has a unique solution.



Next we describe how to get a system for which
1
2

d
dt ‖x(t)‖2 = u(t)T y(t), i.e., to construct a pos-

itive real system, see (Curtain and Zwart, 1995).
Let the state space be X = L2((a, b); R2) and
U = Y = R2. Following Example 7 we choose
W as given by (25), which gives the input

u =
(

eq(b)
eφ(a)

)
=

(
x2(b)
x1(a)

)
. (34)

From (26) select S2 = − 1
4S−T V which in this case

is equal to the matrix S given in (26). This gives
the output

y =
(
−x1(b)
x2(a)

)
. (35)

Now that we have a BCS we will represent it as
a system node. Basically, that requires to find the
operators Ae, Bnode, and C&D. First we find Ae.
We know that the operator Ae of Theorem 9 is the
extension of (32) to X. Furthermore, the domain
of AW = Ae |D(AW ) is given by

D(AW ) = {x ∈ H1((a, b), R2) | x1(a) = x2(b) = 0}.
Notice that the condition in this domain is the
same as letting u = 0, see (34).

Next we find Bnode from (30). To do so, we first
need the operator B. It can easily be checked that
the operator

B =
1

(b− a)

(
0 −(z − b)

(z − a) 0

)
satisfies the conditions in Definition 1.b. More-
over, we also have

JB =
1

(b− a)

(
−1 0

0 1

)
.

Also, in this case it is not difficult to show that
A∗

W = −AW and D(A∗
W ) = D(AW ). Using all

this in (30) and after integrating by parts gives
−〈A∗

W x, B u〉+ 〈x,JB u〉 = −x1(b)u1 + x2(a)u2.

Rewriting the right-hand side of the equation
above and using (30) gives

< x |Bnode u >D(A∗),D(A∗)′=∫ b

a

(
x1(z)
x2(z)

)T [(
−δb 0
0 δa

) (
u1

u2

)]
dz,

which shows that

Bnode u =
(
−δb 0
0 δa

)
u

where δa : H1 → R is defined as δax = x(a) and
δb : H1 → R is defined as δbx = x(b).

Finally, we find C&D. From the output (35) one
can see directly that

C&D

(
x
u

)
=

(
−δb 0
0 δa

) (
x1

x2

)
.

Note that the input u does not appear explicitly
in the representation above, but it is embedded
in the domain of the system node S =

(
A&B
C&D

)
,

which is described by

D(S) =
{(

x
u

)
∈

(
X
U

) ∣∣∣∣ x−Bu ∈ D(AW )
}

.

9. CONCLUSION

Here we studied the transmission line with bound-
ary ports. The telegrapher’s equations were re-
lated to a skew-symmetric differential operator.
Also, it was described how to select the port
variables for the transmission line and a Dirac
structure was defined including these port vari-
ables.

It was also described how to choose inputs and
outputs from the port variables. We showed
how one can select inputs and outputs so that
the energy function satisfies some desired re-
lation. Particularly, we presented how to ob-
tain impedance energy-preserving and scattering
energy-preserving systems.

Finally, we showed how to represent the teleg-
rapher’s equations as a system node, which is a
form of describing abstract infinite-dimensional
systems.
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