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Abstract: The exact mechanism of information transfer between different brain
regions is still not known. The theory of binding tries to explain how different
aspects of perception or motor action combine in the brain to form a unitary
experience. The theory presumes that there is no specific center in the brain that
would gather the information from all the other brain centers, governing senses,
motion, etc., and then make the decision about the action. Instead, the centers
bind together, when necessary, maybe through electromagnetic (EM) waves of
specific frequency. Therefore, it is reasonable to assume that the information
that is transferred between the brain centers is somehow coded in the electro-
encephalographic (EEG) signals. The aim of this study was to explore whether
it is possible to extract the information on brain activity from the EEG signals
during visuomotor tracking task. In order to achieve the goal, artificial neural
network (ANN) was used to predict the measured gripping-force from the EEG
signal measurements and thus to show the correlation between EEG signals and
motor activity. The ANN was first trained with raw EEG signals of all the
measured electrodes as inputs and gripping-force as the output. However, the
ANN could not be trained to perform the task successfully. If we presume that
brain centers transmit and receive information through EM signals, as suggested
by the binding theory, a simplified model of signal transmission in brain can
be proposed. We propose a mathematical model of a human brain where the
information between centers is transmitted as phase-modulated signal of certain
carrier frequency. Demodulated signals were then used as the inputs for the ANN
and the gripping-force signal was estimated on the output. The ANN could be
trained to efficiently predict the gripping-force signal from the phase-demodulated
EEG signals. Copyright c©2005 IFAC
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1. INTRODUCTION

The exact mechanism of information transfer
between different brain regions is still not known.
The theory of binding tries to explain how differ-
ent aspects of perception or motor action combine
in the brain to form a unitary experience (Singer
and Gray, 1995; von der Malsburg, 1985; von der
Malsburg and Schneider, 1986). The theory pre-
sumes that there is no specific center in the brain
that would gather the information from all the
other brain centers, governing senses, motion, etc.,
and then make the decision about the action.
Instead, the centers bind themselves, when ne-
cessary, maybe through electromagnetic waves of
specific frequency. The functional integration or
binding of different brain centers, as a possible
mechanism for stimulus perception, is perhaps
mediated by the synchronizing oscillatory activity
of neuronal population, which can be determ-
ined by the electro-encephalographic (EEG) co-
herence and power spectra analysis (Pfurtscheller
and Andrew, 1999). EEG signals are the result
of superposition of electromagnetic (EM) activity
of neurons during their more or less rhythmic
activity. Since there are many active neurons
in brain cortex their superimposed EM activity
can be detected on scalp as EEG signals. As it
seems, the neighboring neurons are synchronized
through their EM activity and thus produce well-
known brain rhythms, such as alpha, beta, etc.
(da Silva, 1999). Furthermore, as it seems, such
groups of neurons can communicate with each
other on the basis of brain rhythms, which is the
main idea of the theory of binding. Therefore, it
is reasonable to assume that the information that
is transfered between the brain centers should be
somehow coded in the EEG signals. The aim of
this study was to explore whether it is possible to
extract the information on brain activity from the
EEG signals during visuomotor tracking task. In
order to achieve the goal, artificial neural network
(ANN) was used to predict the measured gripping-
force from the EEG signal measurements and thus
to show the correlation between EEG signals and
motor activity.

2. EXPERIMENTAL

For this study, two types of measurements were
performed. EEG signals and gripping force of in-
dex finger and thumb were measured simultan-
eously. For EEG signal recording Medelec sys-
tem (Profile Multimedia EEG System, version
2.0, Oxford Instruments Medical Systems Divi-
sion, Surrey, England) was used with standard 10-
20 electrode system with two rows of additional
electrodes, and without electrodes FP1 and FP2
(Figure 1). For gripping-force recording an ana-

Figure 1. Standard international system of elec-
trode positioning 10-20 with two rows of ad-
ditional electrodes.

log force sensor was used and connected through
12-bit PCI-DAS1002 (Measurement Computing
Corp. Middleboro, USA) to PC. Both recordings
were synchronized through the signal that was
sent from the PC and recorded with EEG re-
cording system. For data acquisition and numeric
analysis of signals, MATLAB with neural network
toolbox was used (Mathworks, 1998; Demuth and
Beale, 1998). In the study, data of 5 healthy,
right-handed subjects were used. The EEG signals
and gripping-force were measured while the sub-
jects performed four different tasks: visual task,
visuomotor task with the right and the left hand,
motor task, and visual and motor task. Visual task
included observation of a sine wave that was pro-
jected on the screen in front of the subject. Visuo-
motor task included observing of the sine wave,
representing the amplitude of desired gripping-
force on the screen and following its shape by
applying the force to the sensor with an index
finger and a thumb as precisely as possible. Motor
task included applying of the gripping-force to
the sensor in approximately sine shape of similar
amplitude and frequency as in visuomotor task,
however, the subject had no visual information
on how precisely he or she was able to achieve the
goal. Blank screen was shown to the subject dur-
ing the task performance. Visual and motor task
was similar to motor task, while the subjects had
to observe checker board instead of a blank screen.
Each task was divided into blocks of which first
part was active and lasted 25s and was followed
by 25s of pause. Each task consisted of 20 blocks.

Signal analysis was performed in MATLAB. EEG
signals were analyzed with power spectra and
coherence analysis (Pfurtscheller and Andrew,
1999). When filtering of the signals was neces-
sary butterworth-type filters were used and sig-
nals were filtered by MATLAB’s filtfilt function
to preserve phase characteristics of the signal.



Three layer feed-forward perceptron network with
16 neurons in the first layer, 10 neurons in the
second layer, and one neuron in the output layer
was used to predict the gripping-force from EEG
signals (Figure 2) with no optimization of struc-
ture. Neurons in the first and the second layer had
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Figure 2. ANN structure used in the study.

tangens sigmoidal activation function and the out-
put neuron had linear activation function. Neural
network was trained by Levenberg-Marquadt al-
gorithm.

3. POWER SPECTRUM AND COHERENCE
ANALYSIS

First, power spectrum and coherence analysis
was performed. The obtained results (Brežan et
al., 2003) are similar to the findings of (Classen
et al., 1998). The most important for the aim
of the study was an increase of power spectra
and coherence in beta rhythms during visuomotor
task. This indicates that information necessary
for gripping-force control might be coded in beta
frequency band which is also physiologically reas-
onable.

4. CORRELATION OF EEG SIGNALS AND
GRIPPING-FORCE

Next, attempts were made to train the ANN to
calculate gripping-force from EEG signals. Suc-
cessful training would show that the information
about the gripping-force is actually encoded into
the EEG signals. The use of linear statistical
methods would be an alternative method, how-
ever, due to high complexity of the system, the
results could be misleading. Only results obtained
for subject 5 are presented, however, results for
all the other subjects show equal characteristics.
The ANN for this study was trained only on the
visuomotor task data for all subjects.

4.1 Raw EEG signals

The ANN was first trained with raw EEG sig-
nals of all the measured electrodes as inputs and
gripping-force as the output. The ANN could be
perform the force prediction from the EEG signals
(Figure 3), however, the prediction was very noisy
and not very accurate.
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Figure 3. Predicted gripping-force F(N) in com-
pare with the measured force when the ANN
was trained on raw EEG signals.

4.2 Beta frequency band

Since physiological characteristics of the brain
as well as power spectra and coherence analysis
suggest that information relevant to the gripping-
force control might be transmitted and received
in beta frequency band, EEG signals were filtered
by a band-pass filter (5-th order butterworth
filter) and only frequencies of beta frequency band
(between 13 Hz and 30 Hz) were left in the signal.
The same procedure as with raw EEG signals was
applied to train the ANN, however, results were
worse than for raw EEG signals (Figure 4).

0 10 20 30 40 50
−5

0

5

10

15

20

25

30

F
(N

)

t(s)

subject 5

predicted
measured 

Figure 4. Predicted gripping-force F(N) in com-
pare with the measured force when the ANN
was trained on beta frequency band of EEG
signals.

4.3 Phase-demodulated EEG signals

In the literature (Jensen, 2004; Jensen, 2001)
some indications could be found that the time
shift of specific neuron EM pulses compared to
the rhythmic signal, produced by the neighboring



group of neurons that are considered to work syn-
chronously, codes the information that has been
stored or computed by the specific neuron. There-
fore, phase characteristics of EEG signals could
play an important role in information exchange
between brain centers during task performance.
The calculation of coherence also needs phase
information of the signal, to compute the results.
If we presume that brain centers transmit and
receive information through EM signals, as sug-
gested by the binding theory, a simplified model of
signal transmission in brain can be proposed. We
propose a mathematical model of a human brain
where the information between centers is trans-
mitted as a phase-modulated signal of certain
carrier frequency. The carrier frequency might
depend on the type of task that the brain is
involved with. Therefore, the EEG signals were
phase-demodulated. As mentioned above, during
visuomotor task, significant power increase in beta
frequency band could be detected, therefore, raw
EEG signals were filtered by a band-pass filter to
extract beta frequency band. Next, the remaining
signal was described by carrier frequency and its
phase shift. The carrier frequency was identified
by manual optimization procedure, where the goal
was to get a phase shift time series that showed
minimal linear increase or decrease tendency. The
signal from each electrode is generally transmit-
ted on a different carrier frequency. However, as
gripping-force control was the primary task of
the brain during tests, the electrode above mo-
tor center for the right hand was chosen as the
reference and all other signals were demodulated
with the same carrier frequency as was estimated
for the mentioned electrode (Figure 5). In Figures
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Figure 5. Phase-demodulation procedure scheme
for reference electrode signal.

6 to 9 demodulated signals of EEG signal from
the electrodes above motor center for the right
hand (F3 in Figure 1) and the right side visual
center (O2 in Figure 1) are shown. The signals
from the left side visual center are very similar
to the signals from the right side visual center,
therefore, only the latter are shown. The carrier

frequency of 21 Hz (subject 5) was identified from
the signal measured on the F3 electrode and the
signals from all other electrodes were demodulated
with the same carrier frequency. As can be seen in
Figure 7, during visuomotor task, the two signals
are obviously modulated over the same carrier
frequency, since they show similar characteristics
when demodulated. In Figures 6, 8, and 9 the
two signals show different characteristics when
demodulated with the same carrier frequency. As
brain does not get any relevant visual information
for the gripping-force control during visual, motor,
and visual and motor task, it not surprising that
the visual center is not synchronized with the
motor center, as is also suggested by the different
carrier frequencies of the two centers during these
tasks. Carrier frequency that was identified for
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Figure 6. Beta frequency band of EEG signals
from motor and visual area during visual
task, phase-demodulated at frequency 21Hz.
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Figure 7. Beta frequency band of EEG signals
from motor and visual area during visuo-
motor task, phase-demodulated at frequency
21Hz.

motor center during visuomotor task was used to
demodulate all the signals during all the tasks.
Demodulated signals were then used as the inputs
for the ANN and the gripping-force signal was
used as the output. It was possible to train the
network to calculate the gripping-force signal from
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Figure 8. Beta frequency band of EEG signals
from motor and visual area during motor
task, phase-demodulated at frequency 21Hz.
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Figure 9. Beta frequency band of EEG signals
from motor and visual area during visual and
motor task, phase-demodulated at frequency
21Hz.

the phase-demodulated EEG signals successfully
(see Figure 10). However, the prediction of the
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Figure 10. Predicted gripping-force F(N) in com-
pare with the measured force when the ANN
was trained on phase-demodulated beta fre-
quency band of EEG signals.

force for any other 50 s active-pause block then the
one the ANN that was trained on, was not possible

(Figure 11). In Figures 6 to 9 it can be seen that

0 10 20 30 40 50
−10

−5

0

5

10

15

20

25

30

F
(N

)

t(s)

subject 5

predicted
measured 

Figure 11. Comparison between trained ANN re-
sponse prediction and real signal for the next
activity-non-activity block.

signal’s phase shifts are very large, however, the
proposed model of communication is most likely
a very simplified version of a very complex sys-
tem, therefore, such large numbers should not be
taken literally. On the other hand, the time series
obviously carries enough information to allow for
gripping-force estimation.

5. CONCLUSIONS

As has been assessed by coherence and power
spectra analysis, motor and visual brain areas
show increased binding during visuomotor track-
ing task (Classen et al., 1998; Brežan et al., 2003).
It is not clear, however, how is the visual inform-
ation coded and transferred to motor areas. We
have addressed that by trying to identify grip force
from EEG signals using ANN. However, it was not
possible to predict the gripping-force from raw
EEG signals. After phase-demodulating the sig-
nals, we were able to train the ANN successfully.
Our results suggest a possible mechanism of brain
networks being transceivers that send and receive
information in certain frequency band by modu-
lating carrier frequency with its phase shift. Co-
herence function takes into account frequency as
well as phase shift of two signals, to calculate their
similarity. Jensen (Jensen, 2001) showed that the
information about space is encoded by the firing of
hypocampal place cells with respect to the phase
of the ongoing theta rhythm. Our study shows
that it is possible to calculate gripping- force from
the demodulated EEG signals, however, the trans-
formation is valid only for the same time periods
of motor activity on which the ANN was trained.
There are few possible reasons for the lack of long-
term validity of the prediction. Neural generators
of brain rhythms are generally deep brain struc-
tures (e.g. thalamus, hypocampus) which have



widespread connections with the cortex of brain
hemispheres. Using these connections, different
cortical regions are able to synchronize in a given
carrier frequency, generated by deep structures.
This frequency might show small shifts over time,
which is a physiological phenomenon. Despite
that, the shift occurs simultaneously for different
regions and the oscillatory binding between them
might still persist. A single carrier frequency in de-
modulation procedure can therefore still provide a
signal with relevant information, however, it does
not allow for prediction. Secondly, the brain is
an adaptive system. The information processing
changes with time during task performance, e.g.
due to learning and strategy optimization. At
the beginning, sensorimotor tasks are performed
using feedback mechanisms. In the process of
training, feedback is more and more supported by
feedforward mechanisms. Thirdly, even in simple
tasks, many other neural processes are involved
and coded in the EEG signals. They represent a
“physiological noise” that effects the ANN train-
ing and prediction. To conclude, we have shown
that it is possible to identify gripping force from
the EEG signals. The proposed mechanism of
phase-coded information transfer might represent
one of the possible computational principles for
communication between oscillatory networks. It
would be interesting to explore the phenomenon
beyond sensorimotor brain regions and visuomo-
tor tracking task.

REFERENCES
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