
MACSIM: A SIMULINK ENABLED

ENVIRONMENT FOR MULTI-AGENT SYSTEM

SIMULATION 1

Peter Mendham, Tim Clarke

Intelligent Systems Group, University of York, Heslington,
York, YO10 5DD, UK

http://www.elec.york.ac.uk/intsys/

Abstract: Agent-based approaches to software and algorithm development have
received a great deal of research attention in recent years and are becoming widely
utilised in the construction of complex systems. This paper presents MACSim a
novel simulation environment which allows a multi-agent system to be embedded
into the industry standard system, Simulink. The architecture of MACSim is
discussed and a case study is presented where a number of MACSim agents are
used to control the behaviour of a Boeing 747 in simulation. Copyright c©2005
IFAC

Keywords: Artificial intelligence; simulators; fault tolerance; complex systems.

1. INTRODUCTION

Agent-based approaches to software and algo-
rithm development have received a great deal
of research attention in recent years and are
becoming widely utilised in the construction of
complex systems (Aström et al., 2001; Jennings,
2000; Parunak, 2000). Agents use their own lo-
calised knowledge for decision-making, supple-
menting this with information gained by com-
munication with other agents. Remaining inde-
pendent of any kind of centralised control whilst
taking a local view of decisions gives rise to a
tendency for robust behaviour (Parunak, 1997).
The distributed nature of such an approach also
provides a degree of tolerance to faults – both
those originating in the software/hardware system
itself and in the wider environment (Kaminka and
Tambe, 2000; Kaminka and Tambe, 1998). It is
for these reasons that a multi-agent system has

1 Corresponding author P. Mendham. Email

pdm104@ohm.york.ac.uk, Tel. +44 (0) 1904 432823,

Fax +44 (0) 1904 432335.

been considered a suitable model on which to
base an intelligent control system for complex sys-
tems requiring a large degree of autonomy (Voos,
1999a; Voos, 1999b; Voos, 2000; Mendham and
Clarke, 2003a; Mendham and Clarke, 2003b).

A concise definition of a multi-agent systems, or
indeed an agent, is much debated. However, it
is generally agreed that an agent has a several
defining characteristics (Wooldridge, 2002; Jen-
nings, 2000):

• Autonomy Every agent has at least one inde-
pendent thread of execution.

• Situatedness Agents are situated in an envi-
ronment, and are capable of interacting with
that environment.

• Communication Agents may communicate
with each other through the passing of mes-
sages.

• Intelligence Where agents are defined as in-
telligent, this usually implies that each agent
has its own knowledge, goals and the means
to act towards those goals, which are all local
to the agent.



A multi-agent system (MAS) is therefore a multi-
threaded environment with the facilities to pass
information between threads in the form of mes-
sages.

There is a great deal of potential in using a MAS
to interface to, or represent a dynamic system
(for example, for modelling the dynamics of an
emergent system). Inspired by this requirement,
this paper details a novel method of simulating a
MAS in a manner compatible with the industry
standard environment Simulink (Mathworks Inc.,
1999).

The paper begins by detailing the requirements
for a MAS interfaced with Simulink. Attention
is focused on discrete-time systems with fixed
numbers of inputs/outputs. In response to these
requirements a multi-agent environment, MAC-
Sim(for Multi-Agent Control Simulation), is de-
tailed. This is accompanied by a discussion of
the facilities MACSim has to offer designers and
developers. To illustrate the potential of MAC-
Sim we present a case study, applying a MAS to
the task of controlling a non-linear model of the
Boeing 747 aircraft. The paper concludes with a
discussion of the future potential of the MACSim
environment.

2. MULTI-AGENT SYSTEMS IN
SIMULATION

The Simulink S-Function Application Program
Interface (API) provides a framework for creating
custom Simulink blocks written in a number of
high level languages including C/C++, Fortran
and Matlab’s native language. This paper is con-
cerned with the specification of a framework which
will support the development of simulations of
a practical MAS. There should be the potential
to interface the MAS simulation to any other
Simulink block. As a practical MAS would in-
evitably be a sampled system, a fixed-rate, dis-
crete time simulation cycle is chosen for simula-
tion. The basic cycle is shown in Figure 1.

Determine input vector size

Determine output vector size

Determine sample period

Start simulation

Calculate output for time step t

End simulation

Fig. 1. Basic Simulink simulation cycle

Simulink has the capability to carry out integra-
tion on behalf of any custom S-function. This
requires the S-function to posses an internal state,
and to calculate state derivatives. However, such
a structure may not be applicable to a MAS in all
cases.

Importantly, a MAS in simulation must have the
ability to continue executing in parallel with the
simulation cycle shown in Figure 1. The MAS
environment should present capabilities allowing
agents to synchronise with the cycle where re-
quired.

Finally, the MAS environment must have the po-
tential for ‘mathematics heavy’ operations, in-
cluding matrix manipulation. The way in which
these facilities are provided will be largely depen-
dent on the choice of implementation language.

To summarise, the MAS simulation framework
should have the following characteristics:

• A fixed-rate, discrete time simulation with no
explicit internal state.

• True multi-threading in parallel with Simulink’s
simulation cycle.

• The capability to synchronise with Simulink
operations.

• Mathematical facilities.

Simple experiments with multi-threading inside S-
functions indicated that there was the potential
for instability in Simulink during operations in-
volving multiple threads. The causes of these is-
sues were difficult to isolate. However, instabilities
became more apparent if a thread of execution
was allowed to continue in parallel with Simulink’s
own simulation cycle. If threading was removed
the system became stable again. This advocates
the requirement for an alternative approach to
providing a multi-threaded environment to ensure
stability.

3. REALISING MACSIM

The MACSim environment is written as a frame-
work of C++ classes for use by MAS simulation
developers. An object-oriented language is more
suitable for the development of agents. Combining
this with the need for a high execution speed,
C++ is an obvious choice. To ensure stability,
MACSim was given a client-server architecture,
separating the multi-agent system from Simulink
as shown in Figure 2.

A lightweight client S-function runs in the Simulink
environment. This communicates with the server
MACSim environment through Windows named
pipes. Two pipes are used, one for passing con-
figuration information and a second for passing
simulation information. This allows these two pro-




 



 
replacemen Simulink

Client

MAS

Server

· · ·

Agents

Fig. 2. MACSim client-server architecture

cesses to be run asynchronously. All communica-
tion across these pipes is conducted in a fixed-size
message format. Queries are sent by the client and
responded to by the server. There are three types
of message used on the configuration pipe:

• number of inputs query;
• number of outputs query;
• sample period query.

Messages on the simulation pipe all have the same
format. A simple packet is used, comprising:

• a header containing size and time step infor-
mation;

• space for the current input vector, which
is filled in by the client before the query
message is sent;

• space for the resulting output vector, filled in
by the server in response.

Once simulation packets arrive at the MACSim
server, they are passed on to the agent environ-
ment.

MACSim provides a class encompassing the basic
behaviour of an agent. This allows multiple agents
to exist within the agent environment. The envi-
ronment provides essential agent facilities such as
coordination and messaging. Upon receipt of sim-
ulation information the agent environment posts
messages to each of the running agents, requesting
them to carry out any operations necessary to
prepare outputs for the specified time step. If an
agent has nothing to do, it immediately returns
a message to the environment indicating that its
work for the current time step is complete. Other
agents may query the environment for the values
of the current inputs, compute outputs and pass
these back to the environment. Only then will
these agents inform the environment that their
work is complete. Once the environment has time
step completion messages from all agents, the
output values are passed to the pipe server for
return to Simulink. The messaging therefore pro-
vides synchronisation with Simulink’s simulation
cycle. It is important to note that, despite the
synchronisation, agents may continue to execute
after sending the time step completion message.

The agent environment is therefore responsible for
the following tasks:

• Acting as a central register of current agents,
allowing the dynamic ‘birth’ and ‘death’ of
agents.

• Coordinating synchronisation with the MAC-
Sim server and therefore with Simulink.

• Responding to queries for the current input
and time step information.

• Storing the current set of outputs and pro-
viding a mechanism for agents to alter these.

• Providing a facility for broadcasting mes-
sages across the agent population.

In turn, there is a minimum set of actions that an
agent must be capable of performing in order to
be compatible with the MACSim environment:

• All agents must register their existence with
the environment and inform the environment
before they cease to exist, of this intention.

• All agents must be capable of sending the
time step completion message in response to
a time step update message from the environ-
ment. Without this response the environment
will wait indefinitely.

• If an agent is presented with a query message
that it does not understand, it must respond
to indicate this. Again, without this response
the environment may wait indefinitely when
attempting a broadcast query.

MACSim provides a set of agent classes which
implement this fundamental behaviour. This may
be extended for further functionality.

Mathematical operations are catered for through
the provision of a set of matrix and vector classes.
These classes use C++ operator overloading to
encourage the use of a coding style which looks
as similar as possible to the mathematical op-
erations it produces. Matrix classes also provide
fundamental operations such as inversion and ex-
ponential.

The facilities offered by MACSim were originally
designed with multi-agent control in mind. How-
ever, the system could easily be used for many
other applications including studies oriented to-
wards artificial life.

4. CASE STUDY: MULTI-AGENT FLIGHT
CONTROL

The Intelligent Systems Group at the University
of York is actively researching multi-agent control.
As part of this research, a test simulation was
required which provided control of a Boeing 747
aircraft. A basic non-linear model of the Boeing
747 was created as a Simulink block and MACSim
was used as the execution environment for the
multi-agent control (Mendham et al., 2004). Fig-
ure 3 shows the model and multi-agent controller
running in Simulink.



Fig. 3. Boeing 747 Model and MACSim Controller
in Simulink

The granularity of the data available supported
the creation of five agents: four agents controlling
actuators (active agents), and one passive agent
providing information about lift and drag of the
major lifting surfaces, plus a gravity model. The
actuators under control are:

• inboard ailerons;
• a simple engine model;
• inboard and outboard elevators, locked to-

gether;
• upper and lower rudders, locked together.

Each active agent has a partial non-linear model
describing the effects of the actuator it represents
on the vehicle as a whole. The passive agent de-
scribes the effect of states such as attitude and for-
ward velocity on the vehicle. Periodically, agents
share locally linearised versions of this informa-
tion to reach consensus on a set of decoupled vehi-
cle models. The number of models produced, and
the agents involved in each of these models, varies
dynamically depending on flight conditions. Using
these models, agents control the vehicle optimally
according to a predefined flight path. The system
response to a simple unit step in altitude is shown
in Figure 4.

0
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10


-0.2


0


0.2


0.4


0.6


0.8


1


1.2





Time s

Altitude m

Fig. 4. Response to a demanded step change in
altitude

Running under the MACSim framework, the
multi-agent controller uses two threads for each
agent plus another two for the environment. It is

possible to allow a linearisation process to occur
concurrently with Simulink, synchronising with
the simulation cycle where necessary. Broadcast
messaging is used to identify groups of agents
involved in decoupled models known as working
parties (WPs). Messaging across ‘mailing lists’ is
then used inside WPs to carry out control tasks.
The mathematical facilities offered by MACSim
are crucial in control computation.

5. RELATIONSHIP WITH RELATED
ENVIRONMENTS

There is a large number of existing agent devel-
opment environments, a few of which are suitable
for studying the dynamics of agent interaction.
We will now focus on three well established en-
vironments largely used for artificial life research:
Swarm (Minar et al., 1996), Breve (Klein, 2002)
and StarLogo (Resnick, 1994). Although very dif-
ferent, each of these environments is concerned
with visualising the dynamics of a MAS. In
Swarm, the environment is treated by the system
as another agent and any data must be collected
by purpose-built observer agents. Breve provides
an environment that includes a physics engine
allowing physical modelling and collision detec-
tion. It also supports 3D visualisation. Whereas
Swarm is programmed in Objective-C or Java and
Breve in an interpreted language known as ‘steve’,
StarLogo is based on the simple Logo language
with extensions to support a very large number of
‘turtles’. Originally intended as a tool to aid the
understanding of complex and massively parallel
systems, StarLogo has proved useful as a simple
but powerful tool to visualise large systems of
fairly simple agents. StarLogo does not provide
facilities for the extraction of dynamic data.

MACSim does not provide facilities specifically
aimed at massive parallelism, though there is no
reason that it could not be used in this manner.
The key feature, when compared with the three
environments mentioned above, is the ability to
extract data from the MAS in ‘simulation time’,
process it through some other dynamic system,
and return it back to the MAS. This is not pos-
sible in any of the three environments mentioned.
With careful programming it might be possible
in Swarm, but agent synchronisation would be an
issue.

MACSim provides no visualisation, relying on
the tools available in Simulink and Matlab. This
places the emphasis on the developer to ensure
that suitable data is passed out of the MACSim
block to create meaningful visualisations.



6. SUMMARY AND CONCLUSIONS

Multi-agent systems have shown great potential
in a number of fields. Investigating the dynamics
of agent interaction is an important field of study.
The multi-agent control simulation environment,
MACSim, allows a MAS to be integrated into the
industry standard Simulink environment either to
study the dynamics of the MAS or to use the
MAS dynamics to control other elements of the
Simulink model. MACSim provides a framework
for the development of agents in C++ and acts as
an enabling platform for applying MAS in prac-
tical simulations. Difficulties with Simulink have
been overcome using a client-server architecture
and providing synchronisation mechanisms to en-
sure that MACSim agents take their proper place
in Simulink’s simulation cycle.

Recent work on MACSim has been driven by the
requirements of a flight control demonstration,
presented briefly in this paper as a case study.
Future work will increase the scope of MACSim
by developing the framework to provide tools for
the investigation of reactive agent system dynam-
ics and emergence. A formalised framework for
control agent development will also be developed
once a clear picture of the fundamental principles
of agents for control emerges.

MACSim will be made freely available from
the Intelligent Systems Group at the University
of York’s web site from March 2005. Refer to
http://www.elec.york.ac.uk/intsys/.

REFERENCES

Aström, Karl, Pedro Albertos, Morgens Blankes,
Alberto Isidori, Walter Schaufelberger and
Ricardo Sanz (editors) (2001). Control of
Complex Systems. Springer-Verlag.

Jennings, Nicholas R. (2000). On agent-based
software engineering. Artificial Intelligence
117(2), 227–926.

Kaminka, Gal A. and Milind Tambe (1998).
What is wrong with us? improving robustness
through social diagnosis. In: AAAI’98 Pro-
ceedings, Madison, WI, USA.

Kaminka, Gal A. and Milind Tambe (2000). Ro-
bust agent teams via socially-attentive mon-
itoring. Journal of Artificial Intelligence Re-
search (JAIR) 12, 105–147.

Klein, Jon (2002). Breve: a 3d simulation environ-
ment for the simulation of decentralized sys-
tems and artificial life. In: Proceedings of Arti-
ficial Life VIII: the 8th International Confer-
ence on the Simulation and Synthesis of Liv-
ing Systems, Sydney, NSW, Australia. MIT
Press.

Mathworks Inc. (1999). Simulink Version 3.
Mathworks Inc.. Natick, MA.

Mendham, Peter and Tim Clarke (2003a). De-
pendable intelligent control through the use
of multiple intelligent agents. In: Proceedings
of the 16th International Conference on Sys-
tems Engineering, ICSE2003, Coventry, UK
(Keith J. Burnham and Olivier C. L. Haas,
Eds.). Vol. 1. pp. 478–483.

Mendham, Peter and Tim Clarke (2003b). Grow-
ing dependablility using a multi-agent ap-
proach to fault tolerance. In: Proceedings of
the 54th Congress of the International Astro-
nautical Federation, IAF-03-U.2.a.04, Bre-
men, Germany.

Mendham, Peter, Andrew Pomfret and Tim
Clarke (2004). Dependable dynamic control
using distributed intelligent agents. In: Pro-
ceedings of the 55th Congress of the Inter-
national Astronautical Federation, IAF-04-
A.4.04, Vancouver, Canada.

Minar, Nelson, Roger Burkhart, Chris Langton
and Manor Askenazi (1996). The Swarm sim-
ulation system: A toolkit for building multi-
agent simulations. Technical Report 96-06-
042 (Working Paper). Santa Fe Institute.
Santa Fe, NM, USA.

Parunak, H. Van Dyke (1997). ‘Go to the ant’:
Engineering principles from natural multi-
agent systems. Annals of Operations Research
75, 69–101.

Parunak, H. Van Dyke (2000). A practitioners’
review of industrial agent applications. Au-
tonomous Agents and Multi-Agent Systems
3(4), 389–407.

Resnick, Mitchel (1994). Turtles, Termites, and
Traffic Jams: Explorations in Massively Par-
allel Microworlds. MIT Press.

Voos, Holger (1999a). Market-based algorithms
for optimal decentralized control of com-
plex dynamic systems. In: Proceedings of the
38th Conference on Decision and Control,
Phoenix, AZ, USA. Vol. 4. IEEE. pp. 3295–
3296.

Voos, Holger (1999b). Market-based control of
complex dynamic systems. In: Proceedings of
the IEEE Internation Symposium on Intelli-
gent Control, Intelligent Systems and Semi-
otics, Cambridge, MA, USA. pp. 284–289.

Voos, Holger (2000). Intelligent agents for super-
vision and control: A perspective. In: Proceed-
ings of the 15th IEEE International Sympo-
sium on Intelligent Control (ISIC 2000), Rio,
Patras, Greece. pp. 339–344.

Wooldridge, Michael (2002). An Introduction to
MultiAgent Systems. John Wiley and Sons,
Ltd.


