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Abstract: A new decoupling control structure is presented for complex industrial 
processes, which consists of a feedback controller, a decoupling compensator and a 
feedforward compensator for unmodeled dynamics. Using this structure, an intelligent 
decoupling control system is established which realizes an adaptive decoupling control 
strategy for industrial processes with integrated complexities by using a neural network 
plus a switching mechanism. Such system can be easily implemented on distributed 
control systems (DCS) and has been successfully applied to ball mill pulverizing systems 
for 200MW power units. Simulation and industrial application show its robust 
performance of the proposed system and its potential prospect in the industry. Copyright 
© 2005 IFAC 
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1. INTRODUCTION 

 
Nowadays heavily coupled control loops are seen in 
many complex industrial processes. These coupling 
effects often result in undesired performance for 
control systems. As such, it is important to 
investigate the realization of decoupling control, a 
topic that has received an increased attention in 
control engineering practice. Indeed, decoupling 
control was initially developed for deterministic 
linear systems (Shinskey, 1979). For linear systems 
with unknown parameters, many adaptive decoupling 
control algorithms have been proposed.  For example, 
multivariable adaptive decoupling controllers were 
presented by McDermott and Mellichamp (1986), 
and Lang, et al. (1986), which combined the 
decoupling design with a self-tuning control structure. 
Also, pole placement adaptive decoupling control 
algorithm was developed by Wittenmark, et al. 
(1987). In these approaches, the coupling effects 
among control loops were viewed as measurable 
disturbances so that they can be eliminated through a 
feedforward compensator (Chai, 1990). To deal with 
coupling in nonlinear systems, neural networks and 
fuzzy methods have been adopted. Relevant 
approaches can also be found in Wu and Chai (1995) 

and Zhu, et al. (1999). These decoupling control 
methods not only require accurate mathematic 
models of the controlled processes, but also are 
difficult to be implemented in DCS. 
 
In recent years, DCS have become more and more 
popular in industrial process control because of their 
high reliability. In practice, control engineers divide 
multivariable industrial processes into many SISO 
systems without considering the coupling effects 
among each loop so as to use the standard control 
module software of DCS to realize the required 
control tasks. If the coupling effects are very strong, 
they would generally result in bad performance of the 
control systems or even lead to an unstable operation. 
Therefore, it is very important to develop effective 
decoupling controllers that are applicable in DCS. 
 
In this paper, an intelligent decoupling control 
approach is developed for the control of real 
industrial processes with integrated complexities (e.g. 
strong coupling, serious nonlinearity, and dynamics 
without accurate mathematics model).  The proposed 
approach uses the generalized minimum variance 
control based decoupling design, which was initially 
proposed for unknown linear systems (Chai, 1990) 

     



2.2 Structure of decoupling control system and later extended to nonlinear systems (Chai, 2005), 
and a multiple models method (Chen and Narendra, 
2001). The intelligent decoupling control system for 
complex industrial processes is applied to a ball mill 
pulverizing system of 200MW power unit. 

 
As shown in Fig.1, the structure of the decoupling 
control system is proposed by combining a feedback 
controller, a decoupling compensator and a 
feedforward compensator for . )]([ txv 

  
2. STRUCTURE OF NONLINEAR DECOUPLING 

CONTROL SYSTEM 
The feedback controller, which is denoted by three 
diagonal polynomial matrices, namely H , R and G , 
is used to make sure that  can follow the 
reference input vector . The decoupling 
compensator 
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H , which is a polynomial matrix with 
zero diagonal elements, is designed to decouple 
control loops. The feedforward compensator K , 
which is a diagonal polynomial matrix, is employed 
to eliminate the influence of unmodeled dynamics 

 to the closed loop system. Indeed,  can 
be estimated by a neural network which is to be 
discussed in the following section. From Fig. 1, the 
control input can be calculated from 
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2.1 Statement of the problem 
 
In practical industrial processes, control systems 
operate in a neighbourhood of several operating 
points. There are possibly multiple operating points 
which are known and determined by various 
production indices. Sometimes, the changes of 
operating points will cause the variations of 
parameters as well as possible structural changes of 
their dynamics. As a result, around its ith operating 
point, the complex industrial process to be controlled 
can be generally described by 
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Substituting (4) into (2) yields mi ,,1L=                             (1) 
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 (5) where  and   
are system output and input vectors, respectively;  
and  are system orders; m represents the number of 
multiple operating points;  is a 
vector-valued nonlinear function that is assumed 
unknown and continuously differentiable. To 
simplify the notations, operating point number i is 
omitted. Equation (1) can be divided into an 
approximated linear model (with lower order) for the 
controller design plus a higher order nonlinear term 
as expressed in the following: 
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From (5), it can be seen that )( 1 GBAH −+ z , RB  and 
)( KBH −  are diagonal matrices whilst matrix 

)( HBBH −  has zero diagonal elements. Moreover, 
H , G  and R  can be properly selected which can 
realize a unity gain for the steady channel gain from 

 to . Also, an appropriate choice of )(tw )(ty H  
would suppress the influence of )()( tuHBBH −  to 
the lowest possible level. The effect of 

)]([)( txvKBH −  can be eliminated through an 
adequate choice of K .  For example, H , G , R , H  
and K  can be chosen by combining the proposed 
structure with well-known control strategies such as 
predictive control, PID, generalized minimum 
variance control, etc. In specific, generalized 
minimum variance control strategy is discussed in the 
following. 
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where A , B  and B are polynomial matrices in terms 
of the unit back shift operator 1−z  with A and B  
being diagonal (Introduce AIA 1−+= z .), and B  is a 
polynomial matrix with zero diagonal elements, and 

 
The significance of the structure of such a decoupling 
control system can be seen from the expression of 
controller of every single loop 
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L  (6) whilst the elements are coefficients matrices of A , 
B  and B . The nonlinear term represents the 
unmodeled dynamics of the following format 

nonlinear
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Qualitatively, the purpose of decoupling control is to 
determine an input control law so that all the signals 
in the closed loop system remain bounded, whilst the 
output vector  is confined in some pre-specified 
range, and the influence of the couples is suppressed 
as small as possible. 

y

Fig. 1. Structure of decoupling control system 

     



where , , and are the elements in the lth row 

and the jth column of 
ljr ljg ljk ljh

R , G , K  and , with H

HHH += .  From (6), it is known that the lth control 
input  only relies on the output , reference 
input  , unmodeled dynamics  of the lth 
control loop and other control inputs , 

. Since other control inputs and the 
estimation of  can be easily obtained, it can be 
effectively implemented on DCS using standard 
control modules. When the compensating terms of 
decoupling and suppressing for unmodeled dynamics 
are not used, this control law becomes a conventional 
controller. 
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then the closed loop system will be stable with a 
decoupling control effect and the tracking errors can 
be eliminated. 
 
 
3.2 Estimation of unmodeled dynamics and models 
 
As for the unmodeled dynamics , a neural 
network is employed to perform an online estimation. 
It has 
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where  denotes the format of the neural networks, 
and  is the input vector.  At the ith operating 
point, the recursive least square (RLS) algorithm is 
used to estimate the parameters of the model (2). The 
estimation of  is denoted by , and the linear 
estimation model  is described by equation 
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3. INTELLIGENT DECOUPLING CONTROL 
USING MULTIPLE MODELS AND NEURAL 

NETWORK iM 1 :  ,           (17) )()(ˆ)1(ˆ1 ttt T
ii xy ⋅Θ=+ mi ,,2,1 L=

The neural network estimation model can be 
expressed by the following equation 

iM 2 
In this section, an intelligent decoupling control using 
multiple models and neural network is developed 
based on the above presented structure of decoupling 
control system for complex industrial processes. 
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 3.3 The switching system 
  
3.1 Nonlinear decoupling controller A set of linear decoupling controllers  are 

designed for all linear models , whilst a 
set of nonlinear decoupling controllers  
are obtained for all nonlinear models . In 
most industrial processes, the unmodeled dynamics 

 is bounded and such an upper bound is known, 
(i.e. 

mCC 111 ,,L
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Δ≤)]([ txv ), with a known upper bound for Δ . 

A performance criterion  (Chen and Narendra, 
2001) for model is defined as 
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In order to choose R , G , K and  in (4), the 
following performance index (Chai, 2005) is 
introduced: 

H
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where , , and  are the diagonal weighting 
polynomial matrices, S is a weighting polynomial 
matrix with zero diagonal elements. By solving the 
Diophantine equation as 
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both  and can be solved to give diagonal 
polynomial matrices structure. At this stage, one can 
choose 

F G

H , H , R , G  and K in (4) so as to satisfy 
QBFH += , RR = , GG = , SBFH +=  and 

KFK += . It can be proved that the optimal 
controller that minimizes (7) is described by 

where 1=j  stands for linear,  denotes nonlinear, 2=j
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2)(1)( ,  is an integer and   

is a pre-specified constant,  is the 
error vector between the system output and the 
predicted output  which is produced by .  At 
each time instant t, if model produces the smallest 
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Equation (5) can be written to read: 
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If the unmodeled dynamics is small, the control law 
can be calculated from 

)()()()()()( tttt uSBFGyRwuQBF +−−=+    (11) 
It can be seen that if P , , ,  and  are 
chosen as follows: 
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SBBQ =                            (13) 
KBQ =                                 (14) 
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Fig. 3. Switching system 

     



whilst 3Σ  is expressed by performance criterion , then its associated 
certainty equivalence control input  can be 
applied to the system by setting . 
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3.4 Intelligent decoupling control algorithm Three BP neural networks of the same structure are 

used, where only one hidden layer is employed with 
20 nodes.  is defined by selecting ,  
and . The following models are constructed and 
used in the control of the plant: a linear model of 

)(tJ i 2.0=Δ 3=N

1=c
1Σ , 

as denoted by ; three nonlinear models as denoted 
by , ,  respectively. The reference inputs are 
given by

0M

1M 2M 3M

)]50[sin(2.0)(1 tsigntw π= , 5.0)(2 =tw , 
respectively. The closed loop responses are shown in 
Fig. 4 and the corresponding control inputs are 
displayed in Fig. 5.  It can be seen that a perfect 
tracking has been realized with a very small coupling 
effect. In addition, switching occurs mostly between 

 and when the process is evaluated at 1M 2M 2Σ , and 
between and when the process is based on 2M 3M 3Σ . 

 
The new intelligent decoupling control algorithm is 
divided into two parts: 1) offline controller design, 
and 2) adaptive compensating algorithm for the 
unmodeled dynamics and a switching mechanism. 
Through the offline controller design, a set of linear 
estimation model  are identified by using 
the RLS algorithm. The related nonlinear estimation 
models are then established by using 
neural networks. Using these models, the 
corresponding controllers can be designed through 
(12)-(15), where a series of neural networks are 
established to approximate the unmodeled dynamics 
and trained in batch. The main tasks of the adaptive 
compensating algorithm for the unmodeled dynamics 
and the switching unit consist of 1) calculating the 
predicted outputs , 2) evaluating , and 
3) producing the smallest  so as to select the 
model that links with the smallest  as the 
model for the controller design. 
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5. APPLICATION IN BALL MILL PULVERIZING 

SYSTEMS  
 
The proposed intelligent decoupling control system 
has been applied in ball mill coal-pulverizing systems 
of 200 MW units in a power plant. 

 
Suppose that the unmodeled dynamics  is 
globally bounded, and then it can be proved that the 
intelligent decoupling control ensures the uniform 
boundness of all the signals. Since the neural 
networks are regarded as universal approximators 
(Funahashi, 1989), the modelling error 

)]([ txv

)(ˆ)]([ tt vxv −  
can be made less than any specified ζ  over a 
compact set by properly choosing their structures and 
parameters. This means that if the modelling error 
converges to zero, the closed loop tracking error can 
be eliminated. 

 
Fig. 4.  The performance of the switching system and 

switching sequence  
 

  

4. SIMULATION 
 
To illustrate the effectiveness of the proposed 
decoupling control system, a simulation study is 
described in this section. The simulation is carried 
out from  to . When , the process to 
be controlled switches from  to ; when , 
it switches from  to  where  is described by 
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1Σ 2Σ 220=t

2Σ 3Σ 1Σ
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and  is described by 2Σ
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Fig. 6. Flow chart of ball mill pulverizing system 
     



5.1 Process description where, , ,  and are the feeder speed, the 
hot air damper position, the warm air damper position 
and the temperature of the mill outlet, respectively. 
The meanings of other variables can be found from 
the work by Chai, et al. (1999) and Tao, et al. (2004). 
Define the input variables as , , 

, and the output variables as 

gmK rK wK mT
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Ball mill pulverizing systems are important heat-
power equipments in power plants. They are widely 
used at 200MW power units in China, where 
thousands of such power generation systems are 
installed. Ball mill pulverizing systems are used to 
pulverize raw coal into fine powder and then dry 
them so that coal powder can be sent into the boilers 
for burning. The flow chart of ball mill pulverizing 
system is shown in Fig. 6. The raw coal is sent from 
hopper to ball mill by coal feeder. In the ball mill, it 
is pulverized to fine powder by knocking and 
grinding of iron ball when the ball mill rotates. At the 
same time, the coal powder is dried and brought out 
of the ball mill by drying air, which is produced 
through a mixture of hot air and warm air by 
adjusting the hot air and warm air damper position. 
Then it is sent into the separator, where the coarse 
powder and fine powder are separated. Coarse 
powder is returned into the ball mill for regrinding 
and fine powder is sent into the bunker and then to 
boiler for burning. 

 
 
5.2 Decoupling control system and application 
 
From the analysis of the process dynamics and the 
industrial experiments, the process model can be 
described by the following equations. 
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where the orders of A and are set to 2 and 1, 
respectively. Then the proposed decoupling control 
system strategy is used. To estimate the unmodeled 
dynamics (i.e., v ,  and ), three BP neural 
networks are adopted, which have the same structure 
of 1 hidden layer and 20 hidden neurons.  Matrices 

, , ,  and have been chosen as follows: 

B
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Since this system has integrated complexities such as 
strong coupling, serious nonlinearity, large time 
delay, big variation of boundary condition, the 
conventional SISO control system cannot be used 
automatically. As such, the ball mill pulverizing 
system relies on human operations, leading to various 
accidents such as mill-blockage, over-temperature 
and mis-emission of pulverized coal powder. To 
prevent accidents, human operators are employed to 
control this system at an uneconomical operating 
point where a large volume of energy has been 
wasted. It has therefore become important yet 
difficult issue on how to realize decoupling control of 
such systems in China. 
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where the cut-and-try method is used. 
 
To illustrate the effectiveness of the feedforward 
compensation for the unmodeled dynamics , a 
comparative experiment between the proposed 
controller and a controller without the feedforward 
compensator is performed, where the warm air is 
taken as a disturbance and the responses of the other 
loops are reviewed. When the control system operates 
in a steady state, the warm air damper position  is 
increased by 10% (i.e., by shifting the damper under 
a temporary manual control) so as to introduce the 
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A nonlinear dynamic first principle model is 
established, which consists of the energy balance 
equation in the ball mill as follows: 
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and the mass balance equation of the form: 
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Moreover, the equation of the inlet pressure  is 
given by:  
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being used as the physical models for the differential 
pressure , the hot-air and warm-air mass flow 
rates.  The coal feeding rate is given by: 

PΔ Fig. 9. Experiment result of the controller without 
feedforward compensator 

gmggm KBB max=                          (32) 

     



reduced by 10.3%. As a result, remarkable economic 
benefits have been achieved. 

warm air disturbance. Fig. 8 and Fig. 9 show the 
experiment results of the disturbance attenuation, 
from where it can be clearly seen that the outlet 
temperature  and the inlet pressure  can return 
to their original setpoints. The measurement ranges 
of the four variables (i.e., the outlet temperature  , 
the inlet pressure , the feeder speed  and the hot 
air damper position ) are 60°C~80°C of 2°C/grid, 
-1.0kpa~0.0kpa of 0.1kPa/grid and 0~100% of 
10%/grid, respectively. The time scale is 3 minutes 
per grid. It can be seen from the experiment results 
that the fluctuations of the outlet temperature are 
within 2°C and the transient response time is about 6 
minutes when the intelligent decoupling control is 
adopted. Moreover, the fluctuation of the outlet 
temperature  is about 4°C and the transient 
response time is more than 15 minutes when the 
controller without the feedforward compensator is 
used. Apparently, the performance of the closed loop 
control system has been remarkably improved 
through the feedforward compensator. 
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6. CONCLUSION 
 
Under a suitable set of assumptions concerning the 
complex industrial process to be controlled, a linear 
model with lower order for controller design and 
unmodeled dynamics with higher order are used to 
identify complex industrial process simultaneously 
under certain operating point. The proposed control 
system uses a feedback controller and decoupling 
compensator to eliminate the coupling among control 
loops and tracking errors. Such controllers employ a 
feedforward compensator with a neural network to 
suppress the effects caused by unmodeled dynamics, 
where it defines a suitable switching law to switch 
between the controllers on different operating points 
of industrial processes. The simulation result and the 
successful real application of the control system in 
200MW power units show that the developed control 
system is powerful in dealing with the decoupling 
control for complex industrial processes.  

The proposed decoupling control system has also 
been applied in the real process. The results are 
shown in Fig. 10. A comparison of the intelligent 
decoupling control with the existing manual control 
is shown in Fig.11.  Under the decoupling control 
strategy, the outlet temperature  can be kept within
±3°C and the differential pressure 

1y

3y  is made within
±0.1kPa.  The average of the feeder speed  can be 
realized as high as 90.5%. However, under the 
manual control the outlet temperature  can only be 
constrained within±7°C and the differential pressure  

 is within ±0.3kPa, where the average of feeder 
speed  can only reach 81.2%. Long term operation 
results of the proposed control system show that 
accidents such as the coal powder mis-emission and 
mill blockage can be completely avoided, the 
environmental pollution has been reduced and the 
electric energy consumption per unit coal has been 
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Fig. 11. Actual control curves under manual control 


