

VOTING WITH DYNAMIC THRESHOLD VALUES FOR REAL-TIME
FAULT TOLERANT CONTROL SYSTEMS

G. Latif-Shabgahi+, M. O. Tokhi*, and M. Taghvaei*

+ ICT Dept, Technology Faculty, The Open University, Walton Hall,
Milton Keynes, MK7 6AA, UK

*Automatic Control and Systems Eng. Dept., The University of Sheffield,
Mappin St., Sheffield, S1 3JD, UK

 (Contact Author: g.r.latif@open.ac.uk)

Abstract: Voting on the outputs of redundant modules with real number results (i.e.,
where correctly functioning redundant systems may arrive at slightly different yet correct
outputs for identical inputs) is not straightforward. Such cases need inexact voting in
which some discrepancies between the outputs of redundant modules are allowed.
Documented inexact voters use a fixed threshold value that may cause problems in
safety-critical systems. This paper introduces a voting algorithm with dynamic threshold
value. The voter is implemented, and compared with its counterpart with a fixed
threshold value. The experimental results show that the novel voter gives more correct
yet less incorrect results than the conventional majority voter with a fixed threshold value
in the examined error scenarios. Copyright © 2005 IFAC

Key Words. Safety-Critical Systems, Fault Tolerance, Redundancy Control, Threshold,
Reliability.

1. INTRODUCTION

Increasing reliability and safety is one of the primary
concerns in many real-time systems. Examples
include safety-critical systems (e.g., flight control,
nuclear power plant control, and medical equipment
such as blood gas analyser used in intensive care
units), highly reliable applications (e.g., railway-
interlocking system, and telecom switch), and
distributed systems (where Byzantine agreement and
clock synchronisation is required). Certain critical
parts of such applications must be able to operate
under faulty conditions. Such applications use
redundancy to reduce the risk associated with relying
upon any single component operating flawlessly.
Triple Modular Redundancy, TMR, and 3-Version
Programming, 3VP, are commonly-used techniques
for masking faults/errors at hardware and software
levels, respectively (Lala and Harper, 1994). The
outputs from three identical modules (in general, an
odd number of modules) operating in parallel with
the same inputs are supplied to a voting module that

arbitrates between them to produce a single output.
The system, therefore, continues its predefined
function even in the presence of some faults/errors. A
voting module specifies how the voting result is
obtained from the output of multiple modules and
can be the basis for implementing a hardware voting
network (see, for example, (Kim et al., 2002)) or a
software voting routine. Various voting techniques
have been used in fault tolerant systems; the most
common of these are majority, plurality, median and
weighted average voters. These voting schemes are
indistinguishable when there is only one faulty
module; however, they behave differently in the
presence of multiple-module failures. In the context
of voting, we are encountered to exact and inexact
voting. In exact (bit-wise) voting, agreement means
that redundant results are exactly the same; thus a 5-
input exact majority voter produces an output when
3-out-of-5 of its inputs are equal. In inexact voting,
some discrepancy between the inputs is allowed;
agreement now means that the redundant results are
not exactly the same, but the difference between

them is less than a particular threshold. The value of
this threshold is application specific. Unfortunately,
there is no analytical approach for setting the value of
voting threshold, most designers use heuristics and
the characteristics of the application to set the value.
Moreover, the implementation of an inexact voter in
the hardware domain is not straightforward in itself
(Quintana et al., 2000).

1.1. Related Work

Exact voting on the results of redundant modules
with real number outputs is not appropriate. For data
derived directly from noisy sources, for analogue
sensor outputs which are read by digital computers,
or for the output of diversely implemented software
programs (Avizienis and Kelly, 1984) which handle
floating point arithmetic an exact match is generally
impossible due to quantisation and/or rounding
errors. Dealing with these cases needs inexact
(threshold) voting. A number of inexact voting
algorithms have been studied in the literature.
Examples are formalised majority and plurality
voters (Lorczak et al., 1989), Predictor voters (Latif
et al., 2002), Smoothing voter (Latif et al., 1998),
and Maximum Likelihood Voter (Kim et al., 1998).
Formalised majority and plurality voters are
extensions of their exact counterparts to handle
disagreed yet correct voter inputs. The predictor and
smoothing voters extend the capability of the inexact
majority voter for handling complete disagreement
voting cases. They predict a value, based on the
history record of the voter previous outputs, as the
voter output in cases of complete disagreement
between the redundant module results. Maximum
likelihood voter has been suggested for multi-version
software with finite output space, under assumption
of failure independence. To estimate the correct
result, it uses the reliability of each software module
and determines the most likely correct module result.
In inexact voting, the selection/generation of the
voter output out of/from the agreed values is also
important. Strategies like random selection (Lorczak
et al., 1989), averaging, weighted averaging
(Parhami, 1994), and mid-value selection have been
used in practice. Recently, a fuzzy approach has been
suggested by Kim et al (1998) that alleviates this
problem by forming a fuzzy equivalence relation.

All aforementioned voters use a fixed threshold value
for reaching an inexact consensus. Knowing the
bounds on the normal deviation between the results
of redundant modules for a system’s entire
operational time allows the design of inexact voters
with a fixed threshold value. However, use of such
voters at the control level of safety-critical systems is
problematic for several reasons: i) the selection of the
threshold is critical; ii) some acceptable module
results may be ignored when using a fixed threshold;
and iii) voters with fixed threshold values are unable
to vary their response in the face of different levels of

disagreement in phased-mission and performance
degradable systems. Soft threshold voter has been
introduced in (Latif et al., 2003) for smoothing these
problems. Instead of using a fixed threshold value for
dividing the module results into ‘agreed’ and
‘disagreed’ groups and then obtaining a value for the
voter output from the agreed values, it assigns a real
value in the range 0.0 to 1.0 for any pair of module
results from which the weighting value of any
module result toward the voter output is obtained.
This real value, in fact, expresses the ‘degree of
agreement’ of any two module results, and can be
controlled to allow the user to change the behaviour
of the soft voter between that of the two baseline
majority and distance-based weighted average voters.

This paper introduces the concept of ‘dynamic
threshold’ for inexact voters. In a voter with dynamic
threshold, the value of the threshold is determined
based on a system’s operational mode. More
precisely, the status of the system, the trajectory of
input data (the output of modules = input data to the
voter), task criticality, and input data values are used
to set a value for voting threshold in each operational
mode. The organisation of this paper is as follows.
Section 2 explains the needs for using dynamic
threshold in inexact voting. Section 3 describes the
experimental test harness and methodology. In
section 4, the comparative safety and availability
performance of the inexact majority voter with a
fixed and dynamic threshold values are investigated.
Finally, some conclusions are given in section 5.

2. INEXACT VOTING WITH DYNAMIC
THRESHOLD

As mentioned in section 1, an inexact voter with a
fixed threshold value may cause problems in many
real time control systems. In multi-state safety-
critical systems some of the operational modes are
more critical than the others; in a flight control
system, for example, take-off and landing modes are
more fault/error-prone than the ascending,
descending, and cruising modes. Thus the fault
tolerant mechanism (and its related adjustments) used
for high-critical operational modes must differ from
that of the less-critical modes. In the case of using a
TMR fault masking strategy, the former modes need
a voting algorithm with a carefully selected threshold
value (small enough to ensure that incorrect
redundant module results cannot contribute toward
voting) whereas the latter modes are likely to work
correctly with a larger threshold value (to ensure that
acceptable variant results are not discarded from
voting). The use of state-based voting threshold
values is also dictated by the range of data created by
multiple redundant modules. Suppose that in the
operational state A, the voter is faced with data from
the interval [1 5], and in state B it is confronted
with data from the interval [100 150]. Here,
arbitrating between redundant data from the two

distinct intervals with an identical threshold value
(e.g., 1.0) is questionable. Obviously, judging
between redundant small numbers needs a smaller
threshold value than arbitrating between the
redundant large real numbers. That is, for state A the
voter inputs {1 2 3} (with the deviation of 1.0 from
each other) are more likely considered in
disagreement whereas for state B, voter inputs {120,
121, 122} with the same deviation are considered in
agreement. This is the basis for choosing a threshold
value for the novel voter. The voter threshold is
proportional to the expected numerical values of its
inputs. The proportional coefficient is an application-
specific parameter.

The internal structure of a voter with an adaptive
threshold value is shown in Figure 1. Knowing the
operational mode of the system and the range of
values expected for that mode enables the designer to
assign a voting threshold value for that mode.

Threshol setting
algorithm

Inexact
arbitrating
algorithm

Vd

voter output

voter input

Mode
indicator

No result
(default output)

Fig. 1. An inexact voter with a dynamic threshold

The structure is clarified by using a hypothetical
flight control example shown in Table 1. In this
example, it is assumed that in high-critical modes
(take-off and landing) the voter is encountered with
small input values (from the range [1 5]),
consequently a small threshold value has been set for

this mode (5.0.
10
1

max
=ex , where

maxex is the upper

band of the range). For less-critical modes (e.g.,
cruising mode) the voter is encountered with large
numbers (from the interval [10 20]), and therefore, a
large threshold vale is chosen (85.2.

7
1

max
=ex).

Table 2 shows the comparative outputs of an inexact
majority voter with dynamic threshold values (set
based on Table 1) with those of a voter with a fixed
threshold value (=0.6) for a stream of inputs. The
first column shows the sample number in brackets as
well as the notional correct output of the voter in that
sample, the next three columns indicate saboteurs’
perturbed outputs (voter inputs), the fifth column is
the output of the fixed threshold majority voter, and
the last column is the output of the dynamic threshold
majority voter.

Table 1. An example for setting a voter threshold

Operational
mode

Mode
 indicator

Range of voter
Outputs

Voter
threshold

Take-off A 0< xe ≤ 5 maxe x.
10
1

Ascend B 5< xe ≤ 10
maxe x.

8
1

Descend B 5< xe ≤ 10 maxe x.
8
1

Cruise C 10< xe ≤ 20 maxe x.
7
1

Landing A 0< xe ≤ 5 maxe x.
10
1

For samples [1] to [4] in which the voter functions in
the mode A, and the inputs are taken from the range
[1 5], the dynamic threshold is 0.5 (=1/10*5). In the
first and second samples, both voters have reached
agreement between the variants, and the result of the
second variant has been selected as output. For the
third sample, the fixed threshold voter gives an
output (correct output) but the dynamic threshold
voter produces no output. In this case, the selection
of a small value for dynamic threshold results in
discarding the good variant results (i.e., 2.8 and 3.4)
from being voted; this is, in fact, the disadvantage of
choosing a small value for voting threshold. Both of
the voters give no-output for the fourth sample.

Table 2. Outputs of majority voters with fixed
threshold (Fx-thr) & dynamic threshold (Dy-thr)

values for 12 cases

exp. output var-1 var-2 var-3 Fx-thr Dy-thr

[1] 1 1 1.2 1.6 1.2 1.2

[2] 2 1.8 2.1 2.9 2.1 2.1

[3] 3 2.8 3.4 4 3.4 ---

[4] 4 4.7 4 3.2 --- ---

[5] 6 6 6.5 7 6.5 6.5

[6] 7 7 7.8 6.2 --- 7

[7] 8 8.9 8 10 --- 8.9

[8] 9 9 10.5 7.5 --- ---

 [9] 10 10 10.4 10.7 10.4 10.4

 [10] 12 12 12.9 13.8 --- 12.9

[11] 13 13 10 16 --- ---

[12] 20 18 19 20 --- 19

In samples [5] to [9] the value of dynamic threshold
is set to 1.25 (=1/8*10), and the voter works in mode
B. In sample [5] both of the voters give an (correct)
output. In samples [6] and [7] the fixed threshold
voter gives no outputs whereas the dynamic threshold
voter produces an (correct) output. These two cases
indicate the benefits of using an appropriate dynamic
threshold value (as well as the problem of choosing a
small fixed threshold value) for an inexact voter; the
fixed threshold voter has discarded good values from
voting. Both of the voters give no output for the next

sample. In samples [10]-[12] the voters function in
mode C, and, hence, the value of the dynamic
threshold is set to 2.85 (=20/7). The fixed threshold
voter produces no result for these samples, whereas
the dynamic threshold voter gives correct outputs for
samples [10] and [12].

3. TEST HARNESS FRAMEWORK

The experimental test harness is shown in Figure 2.
The input generator produces one notional correct
result in each voting cycle. This sequence of numbers
identical correct results expected from redundant
modules. Copies of the notional correct result are
presented to each saboteur in every voting cycle. The
saboteurs can be programmed to introduce selected
module error amplitudes, according to selected
random distributions. The symptom of errors appears
to the voter as numerical input values. A comparator
is used to check for agreement between the notional
correct result and the output of the voter under test at
any voting cycle. However, for simplicity, issues
associated with ensuring synchronisation of the
inputs to the voter and to the saboteurs are ignored.

Input
Generator

Saboteur-3

Saboteur-2

Saboteur-1

Voter Comparator

Accuracy Threshold

Result

Notional correct answer

Voting threshold

Fig. 2. Experimental harnesses

A voter threshold (dynamic or fixed), VT, is used to
determine the maximum acceptable divergence of
voter inputs in each voting cycle from the notional
correct result, and an accuracy threshold, AT, is used
in comparator to determine if the distance between
the notional correct result and the voter output is
within acceptable limits. In this framework, the
accuracy threshold is chosen equal to the voter
threshold in each voting cycle. A voter result which
has a distance from the notional correct answer less
than the accuracy threshold is taken as a correct
output, otherwise it is considered as an incorrect
output. This is a valid assumption in a many real-
time systems in which the discontinuity between
consecutive correct variant results is small (Bennett,
1994). Hence, the presence a large discontinuity is
indicative an error and can be detected by the
acceptance tests. Where the voter cannot reach an
agreement between the outputs of saboteurs, it
produces a of default value that moves the system
toward a fail-safe or fail-stop state. Such voter output
is called a disagreed (benign) result. It is also

assumed that all voters perform correctly. This
assumption is made due to the fact that the voting
algorithm is usually a simpler program than the
modules it monitors. Figure 3 indicates the
classification of a voter outputs in this test harness. It
is obvious that, from the viewpoint of system safety,
agreed–correct results are of interest whereas the
agreed-incorrect results are dangerous and
catastrophic outputs.

Fig. 3. Voter output classification

3.1. Experimental Method

A stream of input data with the sinusoidal profile:
u=50. sin (t)+100 sampled at 0.1 sec feed both the
saboteurs and comparator. For inexact majority voter
with a fixed threshold value, the threshold is set to
0.5, and for the majority voter with dynamic
threshold values the setting xVT .

100
1

= (x is the value

of input data at each voting cycle) is made. The
former setting is the simplified form of the threshold
setting mechanism discussed in section 2. However,
the accuracy threshold is always set to a value equal
to the voter threshold. Random errors with uniform
distribution from the interval [-emax +emax] are
injected into the all saboteurs to simulate modules
errors. emax is selected 2. This injection simulates the
effects of permanent errors in the system. The
outputs of saboteurs are presented to the voter under
test. In every voting cycle the output of the voter, y,
is compared with a copy of input data xo. Based on
the numerical distance between y and xo values, the
output of the voter is interpreted as correct, incorrect,
or disagreed value. For each voter the results of 104
(= n) system runs are classified. In this way, nc
correct results, nic incorrect outputs and nb disagreed
results are collected. It is obvious that for all voters nc
+ nic+n b =n and for weighted average nb =0. These
data are, then, used for evaluation and comparison of
voters. Two performance measures are defined for
this purpose: safety and reliability.

1. Safety (S): Since from a safety viewpoint the

smallest number of agreed but incorrect outputs
is desirable for a given voter, the safety measure

 Voter Output

Disagreed

Incorrect value

 Agreed

 Correct value

can be defined as: S = (1-n ic / n). Thus S ∈ [0
1] and ideally S=1.

2. Reliability (R): A voter which produces more
correct results among its total outputs can be
interpreted as more reliable voter. Reliability is
defined as the ratio of correct voter outputs to
the number of voting actions: R= n c / n. Thus R
∈[0 1] and ideally R=1.

Each performance criterion can be plotted versus a
parameter of the test harness such as error amplitude,
accuracy threshold or versus a voter parameter such
as voter threshold. In this framework, the safety and
reliability performance of voters versus the size of
injected errors are examined.

4. EXPERIMENTAL RESULTS

The safety and reliability performance of two
versions of the inexact majority voter (one with a
fixed threshold value, and the other with dynamic
threshold values) are examined in this section versus
the size of injected errors.

4.1. Experiment 1: Comparing the Reliability and

Safety of 3-input Voters

Figures 4 shows the plot of safety and reliability of 3-
input voters versus error amplitude, emax. In the
examined error scenarios, the voter with dynamic
threshold gives higher safety (less incorrect outputs)
and higher reliability (more correct outputs) than the
voter with a fixed threshold value. For example, with
emax=1, the dynamic threshold voter has a 23% better
safety and about 27% higher reliability performance
than the fixed-threshold voter.

Fig. 4. Reliability and Safety of 3-input voters

versus error amplitude

Figure 5 indicates, more clearly, the superiority of
the dynamic threshold voter (in terms of the number

of correct, incorrect, and agreed outputs) in the error
point emax=0.8.

A
gr

ee
m

en
t

co
rr

ec
t

re
su

lts

in
co

rr
ec

t
re

su
lts

0
2000
4000
6000
8000

10000

am
ou

nt
s

with constant threshold
with dynamic threshold

Fig. 5. Outputs of 3-input voters when emax=0.8 for
104 runs

4. 2. Experiment 2: Comparing the Reliability and

Safety for 5-input Voters

This experiment shows the comparative safety and
reliability performance of 5-input dynamic and fixed
threshold voters versus the amplitude of injected
errors. Figure 6 indicates the results. Firstly,
comparing this figure with figure 4 shows the
superiority of the 5-input voters to their counterpart
3-input versions in terms of safety. The 5-input
dynamic threshold voter, for example, gives higher
safety (less incorrect outputs) than the 3-input
dynamic threshold voter for all error scenarios.
However, such safety improvement is achieved at the
cost of decreasing their reliability performance as
seen from the reliability plots in figures 4 and 6.

Fig. 6. Reliability and Safety of 5-input voters versus

error amplitude

That is, the reliability of the 5-input voter (with
dynamic or fixed threshold) is less than that of its 3-
input counterpart voter. Secondly, Figure 6 also
shows that the 5-input voter with dynamic threshold
values gives higher safety and reliability than the 5-
input voter with a fixed threshold value.

Figure 7 compares the number of correct, incorrect,
and agreed outputs of the examined 5-input voters at
error point emax=0.8. The dynamic threshold voter is
superior to the fixed threshold voter, and this
superiority is much better than that of the 3-input
voters (when comparing figures 5 and 7).

A
gr

ee
m

en
t

co
rre

ct
 re

su
lts

in
co

rre
ct

 re
su

lts

0
2000

4000

6000

8000

10000

am
ou

nt
s

with constant threshold

with dynamic threshold

REFERENCES

5. CONCLUSIONS

In using NMR or N-version programming systems, it
is possible that correct modules may arrive at slightly
different yet correct outputs for an identical input.
Inexact voting is used to deal with this problem. An
important requirement of an inexact voter is to
choose the threshold value by which the consensus of
inputs is examined. Since there is no mathematical
way of determining the threshold value, most
designers use heuristics and the characteristics of the
application to set the value. The paper introduced a
scheme for inexact voting with dynamic threshold
suitable for real-time systems with different safety-
critical modes. The performance of the inexact
majority voter with a fixed threshold value has been
compared with that of the newly introduced inexact
majority voter with dynamic threshold values. The
focus was on the number of correct and incorrect
outputs of voters after n voting action in a fault
injection environment. Two performance criteria,
safety and reliability, were defined, and the
behaviour of voters was examined in the presence of
permanent errors. The experimental results showed
that the reliability and safety of 3 and 5-input

majority voters with dynamic threshold values are
higher than those with fixed threshold values. The
experimental results also showed that the safety of
the 5-input majority voter is always higher than that
of the 3-input majority voter, however, the reliability
of 5-input majority voter is lower than that of the 3-
input voter.

REFERENCES

Avizienis, A., and Kelly, J. P. (1984). Fault-tolerance
by design diversity. IEEE Computer Magazine,
17(7), 67-80.

Bennett, S. (1994). Real-Time Computer Control-
An Introduction. 2nd Edition, Prentice-Hall Int.
(UK).

Kim H, Jeon H. J., Lee K, and Lee H. (2002). The
design and evaluation of all voting triple
modular redundancy system. Proc. Ann.
Reliability and Maintainability Symp., 438-444.

Kim, K., Vouk, M. A., and McAllister, D. F. (1998).
Fault tolerant software voters based on fuzzy
equivalence relations. Proc. IEEE Aerospace
Conference, 4, 5-19.

Lala, J. H. and Harper, R. E. (1994). Architectural
principles for safety-critical real-time
applications. Proc. of the IEEE, 82(1), 25-39.

Latif-Shabgahi, G., Bass, J. M., and Bennett, S.
(1998). Complete Disagreement in redundant
real-Time control applications. Proc. 5th IFAC
Workshop on Algorithms and Architectures for
Real-Time Control, AARTC’98, Cancun,
Mexico, April 15-17, 259-264.

Latif-Shabgahi, G., S. Bennett, and J. M. Bass
(2002). Voting algorithms in multiple error
scenarios for real-time control applications,
Proc. IFAC B’02 World Congress, July 21-26,
Barcelona, Spain.

Latif-Shabgahi, G., Bennett, S., Hirst, A. J., and De
Leon Martinez, A. D. (2003). Soft threshold
voting scheme for safety-critical computer
control applications”, Proc. of WRTP'03: 27th
IFAC/IEEE Workshop on Real-Time
Programming, 14-17 May, Lagow, Poland.

Leung, Y. W. (1995). Maximum likelihood voting
for fault tolerant software fault finite output
space. IEEE Trans. on Reliability, 44(3), 419-
427.

Lorczak, P. R., Caglayan, A. K., and Eckhardt, D.
E. (1989). A theoretical investigation of
generalised voters. Proc. FTCS’19: IEEE 19th
Ann. Int. Symp. on Fault- Tolerant Computing
Systems, Chicago, IL, 444-451.

Parhami, B. (1994). Voting algorithms. IEEE Trans.
on Reliability, 43(4), 617-629.

Quintana, J.M., Avedillo, M.J., Rodriguez-Villegas,
E., and Rueda, A. (2000). Efficient /spl nu/MOS
realization of threshold voters for self-purging
redundancy", Proc. of 13th Symp. on Integrated
Circuits and Systems Design, Sept. 18-24,
Manaus, Brazil.

Fig. 7. Outputs of 5-input voters with emax=0.8 for 104
runs

