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Abstract: This paper presents a new approach to perform time simulation of power 
system transient stability using implicit quadratic integral method. Fast and reliable 
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line stability assessment. The trapezoidal method has been mainly adopted for this 
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1. INTRODUCTION 
 

A large research effort has been focused on numerical 
solutions for nonlinear ordinary differential equations 
(ODE’s). Solution methods can be classified into two 
large categories; explicit method and implicit method. 
The former includes Euler methods and Runge-Kutta 
(RK) methods, and the latter includes the trapezoidal 
method and the implicit Runge-Kutta method. The 
explicit methods have been in wide application to 
most of ODE’s due to its simple algorithm and fast 
computation speed. However, it has been found that 
the explicit methods may be involved in the 
instability problem for ODE’s including the steepness 
problem and/or the singularity problems. The 
algorithm stability has been discussed with the 
stability functions for various implicit methods in 
references (Hairer and Norsett, 1993, 1996). A 
number of numerical methods can be found in the 
literature for ODE’s using neural networks (Logovski, 
1992; Braham, 1989; Shelton, et al., 1992). Logovski 
proposed an iterative method for solving ODE’s on 
Hopfield network (Logovski, 1992). 
 
One of the typical ODE problems arising in science 
and engineering is the Riccati differential equations 
(RDE’s) given by a nonlinear matrix ODE’s, of 
which the solution algorithms are discussed in (Choi, 
1990; Choi and Laub, 1990; Davison and Maik, 
1973; Baczynski and Fragoso, 2001; 

Papavassilopoulos and Cruz, 1979; O’ Brien, 1998). 
The existence of continuous solutions has been 
discussed for the coupled RDE’s arising in closed-
loop Nash games with sufficient conditions for 
existence (Papavassilopoulos and Cruz, 1979). The 
existence of a stabilizing solution to a RDE has been 
discussed in terms of a pole set of a related 
Hamiltonian system (Kundur, 1994). 
 
Regarding transient stability studies of power systems, 
many papers can be found in the literature (Miki, et 
al., 2002; Kundur, et al., 2000; Aboreshaid, et al., 
1996). Aboresaid et al. proposed a method of 
bisection to reduce the computation time required in 
the stochastic evaluation of transient stability 
(Aboreshaid, et al., 1996). A method of transient 
stability assessment has been presented by use of 
critical fault clearing time functions generated by 
simulation of transient phenomena (Miki, et al., 
2002). Kundur, Morison and Wang presented an idea 
of on-line transient stability assessment based on 
their field experiences from many year off-line 
applications, which shows the importance of the 
computation speed of algorithm (Kundur, et al., 
2000). 
 
For the time simulation of power system transient 
stability, the trapezoidal implicit method has been 
preferred due to its stability-preserved behavior and 
fast computation speed. Some of the 2-stage Implicit 



RK (IRK) methods including the trapezoidal method 
are A-stable, but do not satisfy the L-stability (Hairer 
and Norsett, 1996). This may cause some instability 
problem for ODE’s with high stiffness. Besides, the 
trapezoidal method adopts too rough approximation 
in the integration. The 3-stage Diagonal Implicit RK 
(DIRK) method may provide better calculation 
accuracy and better stability-preserved behaviors. 
However, higher order IRK’s are not appropriate to 
apply to problems requiring fast computation speed. 
This study pursues development of a new algorithm 
to improve the accuracy in the update integration 
without loss of computation speed compared with the 
trapezoidal method. This paper proposes a new 
method adopting an approximated integration 
technique by approximation the integrand as a 
quadratic function. It is also shown that improvement 
in calculation accuracy tends to mitigate the 
instability problem with sample studies. 
 
 

2. MATHEMATICAL ANALYSIS 
 
In this section, we introduce the conventional 
algorithms which are in common use for power 
system transient stability analysis, giving comments 
on their features. Finally, a new algorithm will be 
proposed to overcome the weaknesses of RK and the 
trapezoidal methods. 
 
Nonlinear system dynamics can be represented by the 
state equation in the form of 
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2.1 Conventional Algorithms for Power System 

Transient Stability Analysis 
 
In this section, we will briefly introduce conventional 
algorithms to solve (1) in common use for the time 
simulation of power system transient stability. 
 
Explicit Runge-Kutta method. The algorithm of the 
4th order RK method can be characterized by the 
following update rule :  
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Several 4th order algorithms are possible depending 
on the choice of the arbitrary constant. Most typical 

ones of them are as follows : 
Scheme 1 : 
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Scheme 2 : 
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Fig. 1. Trapezoidal Method 
 
In this paper, Scheme 1 is adopted for transient 
stability time simulation in power systems. 
 
Trapezoidal Method In this section, we shall briefly 
introduce trapezoidal method. The ODE (1) can be 
solved by approximated integral with the use of the 
trapezoidal method. 
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Eq. (5) can be rearranged as follows :  
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Implicit Runge-Kutta method (Hairer and Norsett, 
1993, 1996) The s-stage implicit RK method has the 
following update rule 
 

s,,1ikahx,hctfk
s

1j
iij0i0i L=
⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
++= ∑

=

    (7) 



∑
=

+=
s

1i
ii01 kbhxx  

 
Where real numbers bi, aij (I, j = 1, …, s) can be 
arbitrary selected and ci must satisfy the conditions 
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Varieties of selecting aij and bj provide various 
implicit algorithms, for example, implicit Euler 
method and midpoint rule for s = 1, the trapezoidal 
rule and Hammer & Hollingsworth method for s = 2. 
Here, it is noted that the 2-stage implicit RK method 
with a11=a12=a21=0, a22=1, b1=b2=1/2, and c1=0, c2=1 
is just the trapezoidal rule. 
2.2 Proposed Method 
 
For the time simulation of power system transient 
stability, the trapezoidal implicit method has been 
preferred due to its stability-preserved behavior and 
fast computation speed. However, the trapezoidal 
method adopts too rough approximation in the 
integration. This study pursues development of a new 
algorithm to improve the accuracy in the update 
integration without loss of computation speed 
compared with the trapezoidal method. This paper 
proposes a new method adopting an approximated 
integration technique by approximation the integrand 
as a quadratic function. 
 
The ODE (5) can be integrated by 
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where g(t) = f(x(t),t)         (10) nR∈
 
The integrand g(t) can be expanded by using Taylor’s 
series : 
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The coefficients of the quadratic function in (11) can 
be easily evaluated as follows : 
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It is noted that a is given by a function of update 
state xi+1. Since 
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Now we can obtain (15) by substituting (12) and (13) 
into (11). 
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Substituting (15) into the right hand side of (9), we 
obtain (16). 
 

{ }

[ ]

[ ] 2
i1i

i1i
2

i

T

0

2
i1i2i

Tt

t

T
6
1T)t(2)t(

3
1

T)t()t(T
3
1T

2
1T)t(

tdtT)t()t(
T
1t)t(

dt)t(
i

i

∆+∆+=

∆−−∆+∆+∆=

∆⎥
⎦

⎤
⎢
⎣

⎡
∆∆−−

∆
+∆+=

+

+

∆
+

∆+

∫
∫

mgg

mggmg

mggmg

g

 

           (16) 
 
Substituting (16) into (9) and rewriting in the use of 
(10), we can obtain 
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Finally, we have the following nonlinear equation to 
solve for update. 
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The solution of (17) can be obtained by the Newton-
Raphson method through iterative procedures. 
 
 

3. SAMPLE STUDY 
 
In this section, we have to solve a sample ODE’s 
using the proposed method. The results are compared 
with those by the conventional methods. Consider a 
special example as follows : 
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Slope m can be calculated from (12). 
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(a) Proposed Method 
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(b) Trapezoidal Method 
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(c) Runge-Kutta Method 

Fig. 2. Time Step : 0.001sec (10-3) 
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(b) Trapezoidal Method 
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(c) Runge-Kutta Method 

Fig. 3. Time Step : 0.02sec 
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In order to solve the nonlinear equation (17.a), we 
will define new functions F(x,t) as follows : 
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Jacobian matrix can be found as follows :  
 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

∂
∂

∂
∂

∂
∂

∂
∂

2

2

1

2

2

1

1

1

x
F

x
F

x
F

x
F

= ( )
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−
∆+∆

∆−ε∆−

−

2
22

2

A
5.0xxA10T

3
11T

3
1

T
3
1T

3
11

 

where ( ) 42
2

2 105.0x10A −+−=         (21) 
 
Table 1 shows the results of simulation time by the 
three methods. It shows that the proposed and the 
trapezoidal methods require roughly same 
computation time to solve the problems. Explicit 
RK(4) method takes a little bit shorter time than the 
other two methods do. 
 
Figs. 2 and 3 show the results in graph. In each figure, 
the left graphs show the results and the right graphs 
show the slopes, or . x&
 
In Figs. 2 and 3, the graphs are obtained by taking 
simulation time-steps as 0.001 and 0.02 seconds, 
respectively. The three methods show similar graphs 
in Fig. 2, however, RK method shows some distorted 
graph in Fig. 3. 
 
In Table 2, the biggest and the average errors during 
the simulation are compared. The proposed method 
shows smaller errors than the trapezoidal method. In 
case of x1, the maximum error of the proposed 
method is only 2.6% of that of the trapezoidal method. 
Regarding the variable x2, the maximum error of the 
proposed method is 35% of that of the trapezoidal. 

 
Table 1 Comparison of Simulation Time 

 
Simulation Time(seconds) Time 

Step Proposed Trapezoidal R-K 

0.0001 47 47 43.3 

0.001 4.617 4.670 4.372 

0.01 0.503 0.509 0.477 

0.02 0.349 0.344 0.335 

 
Table 2. Comparison of Errors 

 
 Proposed Trapezoidal 
 X1 X2 X1 X2

Max 
Error 

6106 −×  4106.2 −×  4103.2 −×  4103.7 −×

Average 
Error 

7101.2 −× 6102.1 −×  5108.7 −×  5108.7 −×

 
The sample study shows that the proposed algorithm 
considerably improves the calculation accuracy for 
relatively large time step cases. However, the 
instability could be a little mitigated compared with 
the trapezoidal method, and it seems that the 
proposed algorithm satisfies only the A-stability. 



4. TIME-SIMULATION IN POWER SYSTEM 
 
The time simulation of power system transient 
stability has been performed by using the trapezoidal 
method and explicit RK(2) and RK(4). The model 
systems are WSCC 9-bus system and England 39-bus 
system. 
 
In both WSCC 9-bus system and England 39-bus 
system, it is assumed that a 3  fault occur at bus 7 
and be cleared in 0.1 seconds. 

φ

 
 
4.1 WSCC 9-bus system 
 
The time simulation has been performed for 5 
seconds with two time steps; 0.01sec and 0.05sec. Fig. 
4 and Fig. 5 show the results of time simulations with 
time steps 0.01sec and 0.05sec respectively. The three 
graphs in the figures represent the rotor angles of the 
generators. 
 

Table 5 Results of WSCC-9 system(Time step : 
0.01sec) 

 

Method Gen Max 
Error 

Average 
Error 

Calculate
Time 

Gen 1 3105.3 −×  4105.1 −×  
Gen 2 2101.1 −×  4104.4 −×  Proposed 

Method 
Gen 3 3102.8 −×  4108.2 −×  

0.312 

Gen 1 2105.2 −×  2101.1 −×  
Gen 2 2107.7 −×  2102.3 −×  Trapezoidal 

Method Gen 3 2108.4 −×  2100.2 −×  
0.312 

Gen 1 5100.2 −×  6102.8 −×  
Gen 2 5100.6 −×  5103.2 −×  

RK 
Method 
4th Gen 3 5100.5 −×  5106.1 −×  

0.732 

Gen 1 2109.4 −×  2102.2 −×  
Gen 2 1105.1 −×  2102.6 −×  

RK 
Method 
2nd Gen 3 2103.9 −×  2108.3 −×  

0.439 

 
Table 6. Results of WSCC-9 system(Time step : 

0.05sec) 
 

Method Gen Max 
Error 

Average 
Error 

Calculate
Time 

Gen 1 2103.4 −×  2109.1 −×  
Gen 2 1103.1 −×  2105.5 −×  Proposed 

Method 
Gen 3 1100.1 −×  2104.3 −×  

0.085 

Gen 1 1102.6 −×  1108.2 −×  
Gen 2 0109.1 −×  1100.8 −×  Trapezoidal 

Method Gen 3 0102.1 −×  1109.4 −×  
0.079 

Gen 1 2101.1 −×  3102.5 −×  
Gen 2 2107.3 −×  2105.1 −×  

RK 
Method 
4th Gen 3 2101.3 −×  3108.9 −×  

0.169 

Gen 1 0102.1 −×  1105.5 −×  
Gen 2 0108.3 −×  0106.1 −×  

RK 
Method 
2nd Gen 3 0104.2 −×  1106.9 −×  

0.102 

 
Maximum errors, average errors and calculation time 
of the 4 methods are compared in Table 5 and 6. The 

results with time-step 0.001sec are taken as reference 
to calculate errors. 
 
The RK(4) method yields the most accurate results 
requiring comparatively long computation time. The 
proposed method gives more accurate results than the 
trapezoidal and RK(2) methods. 
 
 
4.2. England 39-bus system 
 
The time simulation has been performed for 5sec 
with time step 0.01sec. Maximum errors, average 
errors and calculation time of 4 methods are 
compared in Table 7. The results with time-step 
0.001sec have also been taken as reference to 
calculate errors. 
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Fig. 4. WSCC-9 Bus System (Time Step : 0.01sec) 
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Fig. 5. WSCC-9 Bus System (Time Step : 0.05sec) 
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Fig. 6. Simulation Results of England 39-bus system 



The rotor angles of generators 30, 33, and 38 are 
shown in Fig. 6 and Table 7. 
 
Examining the results one can find that Method 
RK(4) gives the most accurate results requiring 
comparatively long computation time. The proposed 
method produces more accurate results than the 
trapezoidal and RK(2) methods. Through the 
applications to both power systems, we would like to 
claim that the proposed algorithm have a stability-
preserved characteristic good enough for the power 
system transient stability simulation. 

 
Table 7. Results of Eng 39 System(Time Step : 

0.01sec) 
 

Method Gen Max 
Error 

Average 
Error 

Calculate
Time 

Gen 30 3101.2 −×  4106.5 −×  
Gen 33 3103.2 −×  4106.6 −×  Proposed 

Method 
Gen 38 3105.2 −×  4104.6 −×  

1.282 

Gen 30 1106.1 −×  2104.4 −×  
Gen 33 1104.1 −×  2106.3 −×  

Trapezoi-
dal 
Method Gen 38 1100.2 −×  2101.5 −×  

1.297 

Gen 30 5100.9 −×  5108.2 −×  
Gen 33 4105.1 −×  5103.4 −×  

RK 
Method 
4th Gen 38 4103.1 −×  5101.3 −×  

2.649 

Gen 30 1101.3 −×  2105.8 −×  
Gen 33 1107.2 −×  2102.7 −×  

RK 
Method 
2nd Gen 38 1100.4 −×  2109.9 −×  

2.065 

 
 

5. CONCLUSION 
 

This paper presents an approach using a new implicit 
quadratic integral method to perform the time 
simulation of power system transient stability. A new 
implicit quadratic integral method is proposed to 
solve the ‘stiffness problem’ without loss of the 
computation speed in transient stability analysis of 
power systems by time simulation. The algorithm is 
developed to improve calculation accuracy by taking 
quadratic approximation of the integrand in the 
update integral of implicit methods. The proposed 
algorithm is tested with a typical sample study and 
applied to power system transient stability analysis, 
which shows that the proposed method improves the 
computation error compared with the trapezoidal 
method and explicit RK(4) without loss of 
computation speed and mitigates the instability 
problem pertinent to the ‘stiffness problem’. Further 
studies should be required to analyze the detailed 
mathematical characteristics of the proposed 
algorithm, while this study shows it can be a good 
substitute of the trapezoidal method for power system 
transient stability analysis. 
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