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Abstract: Bio-mimetic Robotics often deploys locomotion mechanisms (swimming,
crawling, flying etc...) which rely on repetitive patterns for the actuation schemes.
This directly translates into periodic forcing inputs for the dynamics of the me-
chanical system. Closed loop control is achieved by modulating shape-parameters
(e.g. duty cycle) which directly affect the mean values of the forcing inputs. In
this work, guided by an intuition inspired by linear systems theory, first a linear
feedback law is derived that stabilizes a linearization of the average system, i.e.
the system subject only to the average values of the forcing inputs, and then it
is shown how this very feedback law can also guarantee boundedness of solutions
of the original system. Boundedness is proved my means of a Lyapunov energy
function easily derived in the linearized case. Unlike classical results found in
literature in the areas of averaging and perturbation theory, this work instead of
focussing on the existence of periodic limit cycles, simply restricts its attention
on the boundedness of solutions, which directly translates into the possibility
of deploying input functions which are continuous but not continuously differ-
entiable.Copyright c©2005 IFAC.
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1. INTRODUCTION

Recent developments in Bio-mimetic Robotics
(Ayers et al., 2002) led to a broad variety of bio-
inspired autonomous robots mimicking locomo-
tion of real animals. Whether swimming, crawl-
ing or flying, locomotion mechanisms are often
based on repetitive, i.e. periodic, patterns (slowly)
modulated by a controller via some regulatory
parameters, e.g. frequency, duty cycle, etc...

As an example, consider a flapping wings Mi-
cromechanical Flying Robot (MFI) (Schenato et
al., 2003). Forces and torques arise from repetitive
motion of wings. Periodicity of wing trajectories is
modulated by the slow (compared with the wing-
beat frequency) variation of certain parameters.
Such periodic forces and torques represent the
forcing inputs to the dynamics of a rigid body
problem.

In these situations, the most intuitive approach to
stabilization is considering the system as subject



to an equivalent (slowly varying) average input
instead of a rapidly oscillating one.

This intuition is directly imported from linear
systems theory where mechanical systems display
a linear low-pass filtering behavior which tends
to respond mainly to the (slowly varying) average
values of the inputs while rejecting its high order
harmonics content.

In what follows a general class of nonlinear nonau-
tonomous systems is considered where the time
dependence is present in a parameterized family
of periodic inputs. Via averaging methods, a non-
linear but autonomous system is derived whose
linearized equivalent, supposed to be controllable,
will provided a stabilizing feedback law. It will
then proved, by means of Lyapunov energy func-
tions, that this law can also be used to bound the
original nonlinear nonautonomous system.

2. AVERAGING

Consider the general class of nonlinear systems
represented by:

ẋ = F (x, u(d, t)) (1)

where x ∈ Rn represents the state variable, d is
a vector of parameters, u(d, t) ∈ Rm is a vector
of forcing inputs T-periodic in t, and F : Rn ×
Rm → Rn is a vector field corresponding to the
dynamics of the robot. The parameter vector d is
eventually modulated by a controller (in fact, in
what follows, we shall always imply d = d(x)).

Since mechanical systems of interest are in fact
affine with respect to forces, F (x, u) is assumed
to be affine in u.

This property allows one to write the average
system simply as:

ẋ =
1

T

∫ T

0

F (x, u(d, s)) ds = F (x, ū(d)) (2)

where the bar operator represents the average
operation 1 over the period T and is defined as:

ū(d)
∆
=

1

T

∫ T

0

u(d, s) ds (3)

In order to allow linearization, the following two
conditions are needed:

• F (x, u) is continuously differentiable with re-
spect both arguments.

• ū(d) is continuously differentiable.

Note: assuming continuous differentiability of
ū(d) is far less restrictive than assuming con-
tinuous differentiability of u(d, t), allowing thus

1 As in classical averaging, a time integral is performed

where x is considered as a frozen variable and so any

function of x such as d(x).

piecewise differentiable functions such as triangu-
lar waves. This is a considerable departure from
literature.

Let there be a particular combination of parame-
ters 2 , say d = d0, such that the average system
has an equilibrium in x = 0, i.e.:

0 = F (0, ū0) where ū0
∆
= ū(d0)

Consider now the average system linearized at the
equilibrium:

ẋ =
∂F

∂x

∣

∣

∣

∣

(0,ū0)

x+
∂F

∂ū

∣

∣

∣

∣

(0,ū0)

∂ū

∂d

∣

∣

∣

∣

d0

∆d = Ax+B ∆d

(4)
Where ∆d = d − d0.

When the linearized system is controllable 3 , it
is always possible to find a feedback linear law
∆d = −Kx such that the system:

ẋ = (A − BK)x

is exponentially stable.

Moreover, in such a case, for every positive definite
Q there exist a positive definite P solution of the
Lyapunov equation:

P (A − BK) + (A − BK)T P = −2Q (5)

Such a matrix can be used to define a positive
definite energy function:

V (x)
∆
= xT Px (6)

whose time derivative along the trajectories of the
average nonlinear system is given by:

V̇ (x) = xT PF (x, ū(d0−Kx))+F T (x, ū(d0−Kx))Px
(7)

which can be proved to be negative definite, at
least in a bounded domain D ⊂ Rn around the
origin, i.e.:

V̇ (x) ≤ −xT (2Q)x+O(‖x‖2) ≤ −xT Qx ∀x ∈ D
(8)

Therefore, the feedback law found for the linear
case also stabilizes the nonlinear average system,
at least around the equilibrium.

Now, the original nonlinear system (1) does not
even possess an equilibrium point. Next section
will show how the feedback law previously found
will actually bound system (1) around the origin.

2 Biomimetic robots are in general designed to work

around a nominal set of values derived from the observation

of real animals (Schenato et al., 2003).
3 This can be checked via the full rank test on

B, AB, A2B . . .



3. BOUNDEDNESS VIA LYAPUNOV
ENERGY FUNCTIONS

Linear feedback d = d0 − Kx, applied to the
original system (1), leads to:

ẋ = F (x, u(d0 − Kx, t))
∆
= Fc(x, t) (9)

Thus far, no regularity condition was needed for
u(d, t). In order to assure existence and uniqueness
of solutions in the sense of Caratheodory 4 (Sastry,
1999) for the system (9), only continuity for u(d, t)
is required.

For what follows, more than continuity, a local
Lipschitz condition shall be assumed, i.e.:

∃L : ‖Fc(x, t)−Fc(y, t)‖ ≤ L‖x−y‖ ∀x, y ∈ D, ∀t

It is possible to find families of periodic forcing in-
puts, e.g. triangular waves, such that ū(d) is con-
tinuously differentiable while u(d, t) is Lipschitz
but not differentiable.

This is the main difference with most averaging
theorems found in literature (see Section 10.3 in
(Khalil, 1995)) which require continuity of the
derivatives of vector field up to second order. In
our analysis, instead, the closed-loop vector field
Fc(x, t) in system (9) only needs to be continuous
in both x and t in order to guarantee existence
and uniqueness in the sense of Caratheodory.
Similarly, other groups have recently attempted
to extend averaging theory to non-smooth systems
(Teel et al., 2003) (Iannelli et al., 2003).

Clearly, there is no longer an equilibrium in x = 0.
What is now plausible is that trajectories are
attracted by, or fall into, a bounded region D0 ⊂
D containing the origin x = 0.

The idea is extending theorems such as Theorem
4.18 in (Khalil, 1995) (also reported in Appendix
B) and those in (Aeyels and Peuteman, 1998),
where the fact that V̇ (x, t) ≤ 0 in D−D0 implies
that trajectories are attracted by D0.

3.1 Boundedness

Use V (x) = xT Px as a candidate energy function
and compute its time derivative along trajectories
of (9):

V̇ (xt, t) = xT
t Pẋt + ẋT

t Pxt

= xT
t PFc(xt, t) + FT

c (xt, t)Pxt (10)

where, for sake of clarity, the notation xt simply
stands for x(t), while Fc(x, t) is defined in (9).

4 Discontinuous inputs (PWM) can be included if solu-

tions in the sense of Filippov (Sastry, 1999) are considered.

Checking that V̇ (x, t) ≤ 0 in a whole region
surrounding the equilibrium for all t could often
fail, yet being true most of the time.

In the case of systems forced by T-periodic inputs,
this idea actually leads to a useful test.

Instead of checking the sign of V̇ (x, t), consider:

∆VT (xt, t)
∆
=

∫ t+T

t

V̇ (xs, s) ds

= V (xt+T , t + T ) − V (xt, t) (11)

which after substituting (10) becomes:

∆VT (xt, t) =

∫

t+T

t

[xT

s PFc(xs, s) + F T

c (xs, s)Pxs] ds

(12)

Clearly, if ∆VT (xt, t) ≤ 0 simply means that
V (xt+T , t+T ) ≤ V (xt, t). Therefore after a period
T, the trajectory shall stay on a lower (or at most
equivalent) energetic level, where energy levels
of V (x) are ellipsoids and their energy decreases
down to zero as x approaches the origin.

The purpose now is estimating the sign of (12)
without actually knowing xs, solution of the orig-
inal system (9), for s ∈ [t, t + T ].

To this end, consider for the moment only the first
integrand of (12):

xT
s PFc(xs, s) = xT

t PFc(xt, s) + [xs − xt]
T PFc(xs, s)+

+xT
t P [Fc(xs, s) − Fc(xt, s)]

The first addendum, once integrated over the
[t, t + T ] time interval, is nothing but the first
term of the right side of Eq.(7) multiplied by T ,
i.e.:
∫

t+T

t

xT

t PFc(xt, s) ds =

∫

t+T

t

xT

t PF (xt, u(d0 − Kxt, s)) ds

= T xT

t PF (xt, ū(d0 − Kxt))

Therefore, (12) can be rewritten as:

∆VT (xt, t) = ∆Va + ∆Vb + ∆Vc

∆Va
∆
= T [xT

t PF (xt, ū(d0 − Kxt))+

+FT (xt, ū(d0 − Kxt))Pxt]

∆Vb
∆
=

∫ t+T

t

2[xs − xt]
T PFc(xs, s) ds

∆Vc
∆
=

∫ t+T

t

2[Fc(xs, s) − Fc(xt, s)]Pxt ds

As long as the trajectory is confined in D, the
following inequalities hold:

∀xt ∈ D,

∀xs ∈ D

∀t ∈ R,

∀s ∈ [t, t + T ]

⇒















‖xt‖ ≤ rD

‖Fc(xs, s)‖ ≤ ‖Fmax‖

‖xs − xt‖ ≤ T ‖Fmax‖

‖Fc(xs, s) − Fc(xt, s)‖ ≤ L‖xs − xt‖
≤ L T ‖Fmax‖

(13)

where L is the previously defined Lipschitz con-
stant and:

rD
∆
= max

x∈D
‖x‖

‖Fmax‖
∆
= max

t∈[0,T ], x∈D
‖Fc(x, t)‖



Now use Eq.(7) together with inequalities (8) and
(13) to get:

∆Va ≤ −T xT
t Qxt

∆Vb ≤ 2T 2rDL‖P‖‖Fmax‖
∆Vc ≤ 2‖P‖‖Fmax‖

2

Therefore if xt ∈ D,∀t ∈ R, then Equation (11)
can be bounded as follows:

∆VT (xt, t) ≤ T (−xT
t Qxt + T b) (14)

where the positive scalar b is defined as:

b
∆
= 2rDL‖P‖‖Fmax‖ + 2‖P‖‖Fmax‖

2 (15)

In order to prove boundedness of solutions, define
Ω and Λ set families and their boundaries as
follow:

Ωλ
∆
=

{

x ∈ Rn : ‖xT Qx‖ ≤ λ
}

Λλ
∆
=

{

x ∈ Rn : ‖xT Px‖ ≤ λ
}

∂Ωλ
∆
=

{

x ∈ Rn : ‖xT Qx‖ = λ
}

∂Λλ
∆
=

{

x ∈ Rn : ‖xT Px‖ = λ
}

(16)

Furthermore, define Br = {x ∈ Rn | ‖x‖ ≤ r} and
∂Br = {x ∈ Rn | ‖x‖ = r}. It is now possible to
state and prove the boundedness property.

Lemma 1. For every positive r > 0, it is possible
to find c > 0 and T0 > 0 such that ∀T ≤ T0 every
trajectory, solution of (9) and starting in Λc at
time t0, is confined in Br for t ≥ t0.

Proof: The set D contains the origin at its
interior, therefore ∃r0 > 0 such that Br0

⊂ D.
Consider r1 = min{r, r0}, clearly Br1

⊂ D. The
Λ sets are concentric ellipsoids and therefore it is
always possible to find c > 0 small enough such
that ‖x‖ < r1 ∀x ∈ Λc.

Define dist(Λc, ∂Br1
) as the distance between the

set Λc and ∂Br1
, it is nonzero due to the previous

choice of c. By the third inequality of (13), for
every T < T1 = dist(Λc, ∂Br1

)/‖Fmax‖, any
solution of (9) such that xt ∈ Λc at some time
t will be confined in Br1

for a whole period T , i.e.
xs ∈ Br1

∀s ∈ [t, t+T ]. Therefore, since Br1
⊂ D,

for trajectories such that xt ∈ Λc at some time t,
inequality (14) holds valid.

The Ω sets are also concentric ellipsoids, therefore
a T2 > 0 small enough can always be found such
that ΩTb ⊂ Λc ∀T ≤ T2, where b is defined in (15).
For every point x which is not in the interior of
ΩTb, ‖x

T Qx‖ ≥ Tb holds true and in particular,
given the validity of (14) for points in Λc, the
following holds true:

∆VT (xt, t) ≤ 0 ∀xt ∈ ∂Λc

By defining T0 = min{T1, T2} and by recalling
definition (11), this simply means that for every
T ≤ T0 V (xt+T , t + T ) ≤ V (xt, t) ∀xt ∈ ∂Λc,

i.e. whenever xt ∈ ∂Λc then xt+T ∈ Λc and, by
construction of Λc, it can never leave Br1

for all
time in [t, t + T ]. This proves the Lemma since
Br1 ⊂ Br and therefore a trajectory starting in Λc

is allowed to pass its boundary but shall always
make return in Λc within a period of time and
never leave Br. �

We can summarize our results in the following
theorem

Theorem 1. Consider the following system:

ẋ = F (x, u)

where x ∈ R
n, u ∈ R

m, and F (x, u) is con-
tinuously differentiable with respect to both its
arguments and it is affine in u. Let the function
u = u(d, t) be locally Lipschitz with respect to
the parameter vector d ∈ R

p and T -periodic with
respect to t. Let the averaged input ū defined as:

ū
∆
= ū(d) =

∫ T

0

u(d, s)ds

and assume that ū(d) is continuously differentiable
with respect to d. Suppose there exist a feedback
d = d(x), where d(x) is continuously differentiable
with respect to x, such that the origin is an

exponentially stable equilibrium point of F̄c
∆
=

F (x, ū(d(x))). For each r > 0, there exists a
domain Dr ⊂ Br = {x : ||x|| ≤ r}, and T0 > 0,
such that if x0 ∈ Dr and T < T0 then

x(t) ∈ Br

for all t ≥ t0, where x(t) is the solution of the
closed loop system

ẋ = F (x, u(d(x), t)), x(t0) ∈ Dr.

4. CONCLUSIONS AND FUTURE WORK

In this work, a class of nonlinear nonautonomous
systems is considered which is of interest in Bio-
mimetic Robotics. Such systems are time depen-
dent in the sense that time periodic inputs are
used as forcing inputs for a mechanical system.

A simple control law is derived from the lineariza-
tion of the time-averaged equivalent system. Such
a control law is then fed-back into the original
system and boundedness of solution is analyzed in
relation to the time period of the forcing inputs.

Differently from classical results in averaging and
perturbation theory, which focus on the existence
of limit cycles, only local Lipschitz continuity for
the forcing inputs is needed, instead of continuous
differentiability. The approach is based on Lya-
punov energy functions.

As part of future work, the authors intend ex-
tending their approach based on Lyapunov en-
ergy functions to a larger class of systems, where



forcing inputs are discontinuous, e.g. Pulse Width
Modulated (PWM) systems. The reason is that
even if the original system is discontinuous, the
average system can still be smooth enough to be
linearized and therefore a Lyapunov function can
be easily derived. In order to use this Lyapunov
as a candidate one for the original nonlinear sys-
tem, only conditions for the existence of piece-
wise Lipschitz solutions of the original system are
needed. We are currently investigating the appli-
cation of these ideas to the flapping wing control
of micromechanical flying insect (Yan et al., 2001)
and to the development of biomimetic robots for
minimally-invasive biomedical surgery.

Appendix A

Because of the linearization:

F (x, ū(d0 − Kx)) = (A − BK)x + G(x)

where the function G(x) satisfies:

‖G(x)‖

‖x‖
→ 0 as ‖x‖ → 0

Therefore, for any γ > 0, there exists r > 0 such
that

‖G(x)‖ < γ‖x‖, ∀‖x‖ < r

Hence,

V̇ (x) = xT PF (x, ū(d0 − Kx)) + F T (x, ū(d0 − Kx))Px

= xT P [(A − BK)x + G(x)] + [(A − BK)x + G(x)]T Px

= xT [P (A − BK) + (A − BK)T P ]x + xT PG(x)+

+GT (x)Px

= −xT (2Q)x + xT PG(x) + GT (x)Px

< −xT (2Q)x + 2γ‖P‖‖x‖2

Appendix B

Here is the theorem referred to by previous sec-
tions:
Theorem 4.18 (Khalil, 1995): Let D ⊂ Rn be
a domain that contains the origin and V : [0,∞]×
D → R be a continuously differentiable function
such that

α1(‖x‖) ≤ V (t, x) ≤ α2(‖x‖) (B-1)

∂V

∂t
+

∂V

∂x
f(t, x) ≤ −W3(x), ∀‖x‖ ≥ µ > 0

(B-2)
∀t ≥ 0 and ∀x ∈ D, where α1 and α2 are class
K functions and W3(x) is a continuous positive
definite function. Take r > 0 such that Br ⊂ D
and suppose that

µ < α−1
2 (α1(r)) (B-3)

Then, there exists a class KL function β and
for every initial state x(t0), satisfying ‖x(t0)‖ ≤
α−1

2 (α1(r)), there is T ≥ 0 (dependent on x(t0)

and µ) such that the solution of ẋ = f(t, x)
satisfies

‖x(t)‖ ≤ β(‖x(t0)‖, t − t0), ∀t0 ≤ t ≤ t0 + T
(B-4)

‖x(t)‖ ≤ α−1
2 (α1(r)), ∀t ≥ t0 + T (B-5)

Moreover, if D = Rn and α1 belongs to class K∞,
then (B-4) and (B-5) hold for any initial state
x(t0), with no restriction on how large µ is.
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