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Abstract: This paper describes an integrated approach to diagnosis of complex dynamic
systems, combining model based diagnosis with machine learning techniques, proposing
a simple framework to make them cooperate, hence improving the diagnosis capabilities
of each individual method.
First step in the diagnosis process resorts to consistency-based diagnosis, via possible
conflicts, which allows fault detection and localization without prior knowledge of the
device fault modes. In the second step, a classification system, obtained via machine
learning techniques, is used to propose a ranked sequence of fault modes, coherent with
the previous localization step. This cycle iterates in time, generating more focused and
precise diagnosis as new data are available.
A laboratory plant has been built to test this proposal. Simulation results are shown for a
total number of 14 different faults.Copyright c©2005 IFAC
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1. INTRODUCTION

1.1 The context

Diagnosis of complex dynamic systems is still an open
research problem. It has been approached using a wide
variety of techniques, (Balakrishnan and Honavar,
1998), being the four main approaches: Knowledge
Based – including expert systems—, Case Based Rea-
soning, Machine Learning and Model Based Systems.
Currently, it seems clear that no single technique is
capable to claim its success in every field. Therefore,
an increasing number of diagnosis systems has opted

1 This work has been supported by the Spanish MCyT project
DPI2002–01809 and the “Junta de Castilla y León” project
VA101/01.

for hybrid solutions. This is our case. Our approach
relies primarily upon model-based diagnosis, but it
has been enhanced via machine-learning techniques to
overcome some drawbacks.

Within the model-based approach we can make dif-
ference of two major fields: one coming from the
Engineering community –known as FDI approach–,
and another one coming from the Computer Science-
Artificial Intelligence community –known as DX
approach–. Focusing our discussion on the DX com-
munity the main research effort in order to tackle
real world difficult problems has been directed toward
modelling issues, recognizing that modelling is a key
question in model based diagnosis. This is particularly
severe in the consistency based approach to diagno-
sis (de Kleeret al., 1992), where fault identifica-



tion requires explicit modelling of faulty behaviors.
Consistency-based diagnosis, CBD, provides an el-
egant theoretical framework for fault detection and
isolation. CBD can be summarized as an iterative cy-
cle of behaviour prediction, discrepancy or conflict
detection, fault isolation or candidate generation, and
candidate refinement by means of new measurements.
In this cycle, diagnosis candidates can be automati-
cally obtained from conflicts using a minimal hitting-
set algorithm.

Recently, researchers from DX and FDI communi-
ties have worked to bring together a common frame-
work for model-based diagnosis, which is known as
BRIDGE. In such framework, Cordier et al. (Cordier
et al., 2004) have pointed out that CBD using conflicts
and FDI usingARRs based on structural analysis
are equivalent under given assumptions. The possible
conflict concept (Pulido and Alonso, 2000), which
will be thoroughly used in this work must be also
understood within this BRIDGE framework. Possible
conflicts are those sub-systems capable to become
conflicts in CBD, i.e. minimal subsets of equations
containing analytical redundancy. The set of possible
conflicts can be obtained through off-line analysis of
the set of equations in the original model. Hence, this
technique is rather similar to the ARR approach for
FDI (Staroswiecki and Declerk, 1989).We have re-
cently demonstrated that possible conflicts and ARRs
are also equivalent under given assumptions (Pulido
and Alonso Gonźalez, 2004).

1.2 The problem

The theory underlying CBD was originally developed
for static systems, and has been successfully applied to
diagnose complex dynamic systems. Although there
is no general extension for dynamic systems, au-
thors usually rely upon qualitative or semi-qualitative
models to overcome uncertainty in the models, and
noisy measurements. However, this kind of modelling
is inherently ambiguous concerning behaviour esti-
mation, and does not allow early detection of non-
abrupt faults. Since CBD is able to perform both fault
detection and isolation with just models for correct
behaviour, our proposal uses quantitative models for
correct behaviour of dynamic systems within such
framework. Also, to overcome problems related with
uncertainty and noise, we perform the consistency-
check for a data series using a dissimilarity value. The
whole process is described in (Pulidoet al., 2001).

Within the BRIDGE framework Cordier et al. (Cordier
et al., 2004) have stated that main difference between
DX and FDI approaches to model-based diagnosis
comes from the way the fault signature matrix, FSM,
is analyzed: while matching the real and the theoret-
ical FSM, both communities used different diagnosis
assumptions. FDI methods usually rely uponsingle-
fault and no-compensationassumptions. This is not

the case in DX. This fact provides another drawback
for precise fault isolation in DX: fault isolation and
identification in CBD can not be done unless any other
fault mode has been rejected. Hence, the FSM is re-
vised just to reject those fault signatures which are not
consistent with current conflicts, i.e. residuals. There-
fore, for continuous dynamic processes with limited
observability, usually there is no specific candidate
localization, but a collection of components or fault
modes which are consistent with current observations
(i.e. they have not been rejected yet). This problem can
be even worse when fault symptoms exhibit different
dynamics. Conflicts can be found at different time
steps, and fault identification requires additional time
to be sound from a logical point of view.

Our proposal consists on enhancing the precision in
the fault localization step within CBD based on possi-
ble conflicts using machine-learning techniques, while
keeping diagnosis soundness.

The organization of this paper is as follows. First,
we summarize the machine-learning concepts used in
the approach. Second, we provide a description of
the enhanced CBD protocol. Finally, we show some
results on a case study, and draw some conclusions.

2. MACHINE LEARNING TECHNIQUES FOR
FAULT IDENTIFICATION

Machine learning techniques has been successfully
used to automate fault diagnosis, inducing trees or
rules from examples, (Quinlan, 1993), or training
artificial neural networks, (Venkatusugramanian and
Chan, 1995). These techniques try to identify behav-
ioral patterns associated to the different faults, and
allow to perform fault identification. However, the ma-
jority of the machine learning techniques do not take
into account the dynamic aspects of a problem and,
consequently, fail to exploit the temporal information
that so meaningful seems to be to human trouble-
shooters.

Since main patterns for identifying faults in dynamic
environments consist on the evolution over time of
variables related with the current fault, we have ap-
proached the diagnosis problem as classification of
multivariate time series.

2.1 Time Series Classifiers

The considered classification system is based on the
family of learning methods named “boosting”, us-
ing very simple base classifiers: only one literal. At
present, an active research topic is the use ofensem-
blesof classifiers. One of the most popular methods
for creating ensembles is boosting, (Schapire, 1999). It
works assigning a weight to each example. Initially, all
the examples have the same weight. In each iteration
a base (also namedweak) classifier is constructed,



using any other classification method, according to the
distribution of weights. Afterwards, the weight of each
example is readjusted, based on the correctness of the
class assigned to the example by the base classifier.
The final result is obtained by weighted votes of the
base classifiers.

The base classifier used here are interval predicates.
There are two kinds: relative and region based. Rel-
ative predicates consider the differences between the
values in the interval. Region based predicates are
based on the presence of the values of a variable in a
region during an interval. This section only introduces
the predicates; (Rodrı́guezet al., 2001) gives a more
detailed description, including how to select them ef-
ficiently. These predicates are:

• increases (Example, Variable, Beginning, End, Value).
It is true, for theExample, if the difference between the
values of theVariable at End andBeginning is greater or
equal thanValue.

• decreases (Example, Variable, Beginning, End, Value).
Idem when the difference is less or equal.

• stays (Example, Variable, Beginning, End, Value). It is
true, for theExample, if the range of values of theVariable
in the interval is less or equal thanValue.

• always (Example, Variable, Region, Beginning, End). It
is true, for theExample, if the Variable is always in this
Region in the interval betweenBeginning andEnd.

• sometime (Example, Variable, Region, Beginning, End).
Similarly, when the variable stays for sometime.

• true percentage (Example, Variable, Region, Begin-
ning, End, Percentage). It is true, for theExample, if the
percentage of the time betweenBeginning andEnd where
the variable is inRegion is greater or equal toPercentage.

2.2 Using the Classifiers for Fault Identification

Normally, when a classifier is used, the only expected
result is the selected class. For fault identification, it
would be desirable to obtain a ranking of the different
fault modes. This ordering contains information that
may be useful for the human responsible on the com-
mand of the process. On the other hand, some faults
will be discarded in the model-based stage, so the
desired output is an ordering of the remaining candi-
dates. TheADABOOST(Schapire, 1999) algorithm as-
signs for each class a determined value: the weighted
vote of the individual classifiers for that class. These
value can be used for considering the result of the
classifier not as a unique class but as an ordering of
the set of classes. If some classes have been discarded
in a previous step, then it is only necessary to compute
the weighted vote for the remaining classes.

In order to measure the adequacy of a classification
with these features we have considered the average
number of classes that appear before the correct class.
In order to obtain a measurement with a range in-
dependent of the number of classes, the value of the
average number of classes that are before the correct
one is divided by the number of classes minus one.
In this way, that value will be between 0 and 1. This
measure is calledposition error. The classical error,

here will be calledclassification error, with the objec-
tive of avoiding confusions. A position error of 0%
indicates that the correct class is always the first, a
100% indicates that the correct one is always the last.
If the order of classes were assigned randomly, the
average value of this error would be 50%.

The classifiers have been obtained using full series as
training examples. They are trained with series that
start and end in a steady state, with faults happen-
ing somewhere in between. Nevertheless, it is not an
option to wait for a full series in order to use the
classifiers, we want to apply the classifiers as soon as a
fault is detected. Hence, the classifiers must deal with
partial time series, and they must produce a classifi-
cation, as good as possible, considering the available
information. We call this featureearly classification.
From all the literals in the classifier, some of them will
have a defined result for the partial example, because
their intervals refer to areas that are already available
in the example. Nevertheless, for other literals their
results will be unknown because their intervals still
are not available for the example. The learning method
produces as a result a linear combination of literals.
The literals that still have an unknown result, will be
simply omitted from the classifier. The classification
given to a partial example will be the linear combina-
tion of those literals that have known results.

3. INTEGRATION OF CONSISTENCY-BASED
DIAGNOSIS USING POSSIBLE CONFLICTS

AND TIME SERIES CLASSIFIERS

The CBD approach based on possible conflicts for
continuous dynamics systems has been previously in-
troduced in (Pulidoet al., 2001). The integration of
model based diagnosis and machine learning tech-
niques may be accomplished in several ways. It basi-
cally depends on which properties we desire the end
system to exhibit. Since we wanted to preserve the
logical soundness of consistency based diagnosis, we
have opted for giving higher priority to its output,
constraining the machine learning methods to refine
previously localized faults.

To achieve this behaviour, the induced time series
classifiers are slightly modified. Let us denote by
CLASSIFIER(t) an invocation of the induced time
series classifier with a fragment of series from time
t to min(current time,t+maximum series length).
Each call toCLASSIFIER(t) will return a list of fault
modes ranked by their voted weight. Let us denote
by CLASSIFIER(t, c) an invocation to the modified
classifier, beingc a set of consistency based diagnosis
candidates. A call toCLASSIFIER(t, c), will compute
the list obtained firstly invokingCLASSIFIER(t) and
secondly removing those fault modes not associated
to components ofc. To further simplify the problem,
singled fault hypothesis is assumed; otherwise, the



induction of the time series classifiers becomes a
combinatorial problem.

Due to the capability of the induced classifiers to
consider only a fragment of a time series –early
classification– and to discard the fault modes not as-
sociated with the current candidates –as the previous
paragraph shown– the integration of both techniques is
particularly simple if consistency based diagnosis re-
lies on the concept ofpossible conflict: the integration
only requires to invoke the time series classifiers from
the iterative and incremental cycle of diagnosis with
possible conflicts. Additional details about the integra-
tion architecture and results for typical benchmark in
machine learning can be found in (Alonso Gonzálezet
al., 2004).

In a dynamic environment, diagnosis with possible
conflicts is performed in an iterative and incremen-
tal way, assuming the hypothesis of non intermittent
faults. To improve fault localization and facilitate fault
identification, we only have to add a new step, 2d, to
the basic cycle2 .

(1) OFF-LINE:
(a) analyze the modelSD looking for possible conflicts,

pci

(b) build appropriate executable models for each possible
conflict,SDpci

(2) ON-LINE:
repeat

(a) simulateSDpci usingOBSpci and producingPREDpci ,
(b) if | PREDpci −OBS′pci

|> δpci thenconfirmpci,
(c) if a newpci is confirmed,thencompute the new set of

candidates
(d) update fault modes ranking withCLASSIFIER(t0, set

of candidates)
until there is nopci to be simulated.

The proposed diagnosis process will incrementally
generate the set of candidates obtained from available
observations. Simultaneously, it will order the avail-
able fault modes according to their confidence, in a
process with an error rate that decreases as bigger
fragments of the variables evolution is available.

4. A CASE STUDY

4.1 The plant to be diagnosed

The designed laboratory plant, which can be seen
in figure 1, tries to resemble common industrial
continuous processes. It is made up of 4 tanks –
{T1, T2, T3, T4}–, 5 pumps –{P1, P2, P3, P4, P5}–,
and 2 PID controllers –{PI1, P I2}– acting on pumps
{P1, P5} to keep the level of{T1, T4} close to the

2 WhereOBSpci denotes the set of input observations available in
SDpci , PREDpci represents the set of predictions obtained from
SDpci , OBS′pci

denotes the set of output observations inSDpci ,
andδpci is the maximum value allowed as the dissimilarity value
betweenOBS′pci

and PREDpci . t0 is the starting time of the
series, prior to the first conflict confirmation.
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Fig. 1. Reconfigurable laboratory plant made up of 4
tanks, 5 pumps, 2 controllers, and 2 resistors.

specified set point. To control temperature on tanks
{T2, T3} we use two resistors –{R1, R2}.
In this plant we have the following set of measure-
ments: levels of tanksT1 andT4 –{LT1, LT2}–, the
value of the PID controllers on pumps{P1, P5} –
{LC1, LC2}–, in-flow on tankT1 –{FT1}–, outflow
on tanks{T2, T3, T4} –{FT2, FT3, FT4}–, and tem-
peratures on tanks{T2, T3, T4} –{TT1, TT2, TT3}–
. Action on pumps{P2, P3, P4} and on resistors –
{R1, R2}– are also known.

We have used common physics equations to model the
behavior of each component:

tdm mass balance in tankt
tcm evolution of mass from mass balance int
tct computing temperature in tankt
tdE energy balance in tankt
tcE computing temperature from energy balance int
tfb flow from tankt to pump
tf flow from tankt through a pipe
p1 relation between flow and pressure within a pump
p2 relation between inflow and outflow in a pump

This plant can work on different situations because
our diagnosis approach is just a task within a global
supervision problem (Acosta Lazoet al., 2002). We
have defined three working situations which are com-
manded through four different operation protocols. In
the operation protocol used in this paper resistorR1

is switch off, while resistorR2 is on. Also, pumps
{P3, P4} are switch off; hence, just flowFT1 is an
input to tankT1.

4.2 Consistency-based diagnosis using possible conflicts

In this system we have found 10 different possible
conflicts, all of them minimal w.r.t. the equations used
in the models. These possible conflicts can be seen in
Table 1.

In this plant we have considered the following classes
of faults for the current protocol: related to leakages
in tanks —{f1, f2, f5, f7, f9}—, pipes blockages —
{f3, f4, f6, f8, f10}—, pumps failures —{f11, f12, f13}—
, and resistor failure —{f14}—. Table 2 show what



PC1 {t1dm, t1fb1, t1fb2, p11, p12, p21, p22}
PC2 {t1ct, t1dE , t1fb1, t1fb2, p11, p12, p21, p22, t2dm, t2ct, t2dE}
PC3 {t1ct, t1dE , t1fb1, t1fb2, p11, p12, p21, p22, t3dm, t3ct, t3dE}
PC4 {t1fb1, p11, p12, t3dm, t3fp}
PC5 {t1fb2, p21, p22, t2dm, t2fp}
PC6 {t4dm, t4fb5, p51}
PC7 {t4dm, p52}
PC8 {t4ct, t4dE , t4fb5, p51}
PC9 {t4ct, t4dE , p52}
PC10 {t4fb5, p51, p52}

Table 1. Possible conflicts found for the
laboratory plant.

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14
PC1 1 1 1 1 1 1
PC2 1 1 1 1 1
PC3 1 1 1 1 1 1
PC4 1 1 1 1
PC5 1 1 1 1
PC6 1 1 1
PC7 1 1
PC8 1 1
PC9 1
PC10 1 1

Table 2. PCs and their related fault modes

would be the relation between possible conflicts and
described faults3 .

4.3 Induced Classifiers

Since fault detection is obtained via possible conflicts,
it was only necessary to consider 14 classes: one for
each fault mode. For each faulty behaviour 20 exam-
ples were generated. These simulations differ because
we have randomly selected the free parameters for the
operation protocol and noise was added to the input
flow. Also, the values for parameters modelling the
fault were also tossed. Every simulation always has at
least 3 minutes of correct behaviour. Faults randomly
occur, between 3 and 5 minutes from the start. The
series are simulated for 15 minutes (time required for
variables with slow dynamic to reach a new steady
state).

Figure 2 shows the evolution of some variables for
f1 –a small leakage inT1–, andf2 –medium or big
leakage inT1–, respectively. Keep in mind that this is
a ten variable problem.

a. Fault modef1.

b. Fault modef2.

Fig. 2. Meaningful magnitudes (FT3, FT4, LT1,
LC1) to distinguish fault modesf1 andf2.

The classifiers were built from the relative and region
based predicates (section 2) and the classifiers were

3 Fault Signature Matrix in FDI terminology.
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Fig. 3. Fault detection using usingPC1.

formed by 100 literals. Experimental results were ob-
tained using 10-fold cross-validation. The classifica-
tion error is2.86% when using complete series,7.14
when the50% of the series are available and23.93%
when only the35% is available. The position errors
are 0.49%, 1.43% and 4.94% for, respectively, full
series, half the series and35% of the series. Since
this is a 14 class problem, these errors mean that the
average position of the correct class in the ranking are,
respectively,1.06, 1.19 and1.64.

4.4 A diagnosis episode

To illustrate the behaviour of the system we include a
complete diagnosis episode for the second fault mode,
f2: medium to large leak in the first tank. The free
variables of the operation protocol and the beginning
of the fault were randomly selected. Figure 2.b shows
the evolution of the four most significant variables
obtained from simulation.

The episode starts with a detection due to the confir-
mation of the first possible conflict,PC1. Figure 3,
left, shows the observed and predicted values ofLT1

via PC1. Right hand side shows the output of the
detection phase for this possible conflict: using a slid-
ing window approach, every 30 seconds a set of 60
values are compared using dynamic time wrapping,
DTW. DTW is used for detection due to its robustness
to compare time series. If the returned dissimilarity
value exceeds the threshold, the possible conflict is
confirmed as a real conflict. With a detection threshold
of 0.01, the possible conflict is confirmed att = 330
seconds. It is important to note that this is the only
established conflict in the whole episode.

Considering the delay introduced by the monitoring
process and the methodology applied to simulate the
training example we situate the origin of the time
series att0 = 60. Thus, at detection time, we start to
classify fragments of270 seconds —30% of the whole
series—.

A call to CLASSIFIER(60) at t = 330 returnsf1,
f10 andf2 as the three most plausible faults. However
f10 may be filtered out, becausef10 is not a fault
mode associated to the relations ofPC1. Hence, in
this example, from detection time we have a satisfying
ranking:f1, f2 which stand for small, medium to big
leak inT1.

A call to CLASSIFIER(60) at t = 420 —that
is, 1.5 minutes after detection time and40% of the
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Fig. 4. Evolution of the confidence assigned to each
class by the classifier. The thicker curve corre-
sponds to the correct class.

series— returnsf2, f7 andf8 as the three most plau-
sible faults. Now,f7 and f8 may be discarded. The
remaining fault,f2, is the correct one.

From now on, the weight off2 keeps increasing,
maintaining a significant gap with the class in the
second place. This situation is illustrated in figure 4,
which shows the evolution of the confidence assigned
by the classifier to the different classes as a function
of the series percentage for this particular example.

5. DISCUSSION

An integrated approach to diagnosis of dynamic
systems, combining consistency-based diagnosis and
machine-learning techniques, has been introduced. It
pretends to be effective for complex scenarios. The
proposal has been illustrated with a non trivial exam-
ple, which shows the viability of the approach. Re-
garding to classification error, the induced classifiers
behaves quite well. Moreover, the cooperation of both
methods may improve the diagnostician performance
as the selected example pointed out.

Special effort has been done to keep the best proper-
ties of consistency based diagnosis: diagnosis results
are sound and complete, using just models of correct
behaviour. It should be noticed that the proposed way
to integrate both techniques does not lose the com-
pleteness of the system, guaranteed by the consistency
based phase. If a non considered faulty model arises,
the system is still able to do fault localization. At the
same time, we try to alleviate its major drawback:
diagnosis tends to be unfocused due to the absence of
fault information. This fault information is introduced
resorting to machine learning techniques. A major ad-
vantage of the proposed method is that fault models
for training do not require to know the precise value
of the parameters modelling the fault. Moreover, some
degree of variations on these parameters may facilitate
the induction process.

The induced models, time series classifiers, describe
in a natural way some temporal properties of the
faulty behaviours: they are designed to work with
time series and their symbolic nature allows to adapt
them to accept series of different length. This property
provides several opportunities for a natural integration
on the iterative cycle of consistency based diagnosis.

This work is part of an ongoing research activity,
and further experimental effort has still to be done.
Particularly, we would like to test the approach on
even more demanding scenarios.
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