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Abstract: This work is an extension of the paper (Mosskull et al., 2003), in which the
modelling, identification and stability of an nonlinear induction machine drive is studied.
The validation of the stability margins of the system is refined by an improved estimate
of the induced L2 loop gain of the system. This is done with a procedure called power
iterations where input sequences suitable for estimating the gain are generated iteratively
through experiments on the system. The power iterations result in higher gain estimates
compared to the experiments previously presented. This implies that more accurate
estimates are obtained as, in general, only lower bounds can be obtained as estimates
for the gain. The new gain estimates are well below one, which suggests that the feedback
system is stable. The experiments are performed on an industrial hardware/software
simulation platform. In this paper we also discuss the power iterations from a more general
point of view. The usefulness of the method for gain estimation of nonlinear systems is
illustrated through simulation examples. The basic principles of the method are provided.
Copyright ©IFAC 2005
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1. INTRODUCTION

Our main objective is to extend and improve the val-
idation presented in the previous paper (Mosskull et
al., 2003), which will be our key reference in this
work. Both this paper and the previous are about
the closed loop stability properties of a nonlinear
induction machine drive for rail vehicle propulsion.
A critical issue is to obtain an accurate estimate of
the loop gain of the unmodelled nonlinear dynam-
ics of the drive. By definition, the loop gain is the
maximum of the the ratio of the L2 norms of the
output and input of the loop. Hence, computing this
ratio for any input/output pair gives a lower bound
on the gain. However, it is a most difficult prob-
lem to find an input which maximizes the ratio for
such a nonlinear system. An important contribution of
this work is that we present new experimental results

1 This work was partially supported by the Swedish Research
Council.

where a procedure called power iterations, suggested
in (Hjalmarsson, 2004), is used to generate suitable
inputs. Briefly, this method uses the system itself in
repeated experiments to generate inputs. Hence in this
work the validation is done in a new and more struc-
tured way than in the previous work, where physical
insight of the system was used to make a qualified
estimate of the maximizing input. In view of that very
little is known about the properties of power itera-
tions for nonlinear systems, another contribution of
this paper is to show that this method is potentially
useful for estimation of nonlinear system gains. This
is shown via the induction machine drive application
and a simulation example. Also, the basic principles
behind this method are provided.

The paper is organized as follows. Section 2 gives
a description of how the induction machine drive is
modelled and explains how the small gain theorem
can be used to analyze the stability properties of the
induction machine drive. This section is a summary of



the previous work. In Section 3 the power iterations
are introduced. The connection to the power method
is described as well as how it can be applied when
analyzing stability. Experimental results are given in
Section 4, which compares our new results using
power iterations with the previous results. Section 5
concludes the paper.

2. THE INDUCTION MACHINE DRIVE

This section is a summary of the description of the
induction machine drive and the modelling procedure
already discussed in the previous work. Therefore, for
all details in this section, see (Mosskull et al., 2003).
The drive with voltage source inverter, induction ma-
chine and RLC-network is shown in Fig. 1.
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Fig. 1. Induction machine drive.

Here ud(t) is the DC-link voltage, id(t) is the DC-link
current and e(t) is the supply voltage. The signal k(t)
represents the control of the converter. Furthermore,
ωM denotes the mechanical rotor speed. The nonlinear
relation between the voltage and the current is mod-
elled by

id(t) = G0(q)ud(t)+ vNL(t) (1)

where G0 is a linear model and vNL is the unmodelled
nonlinearity. In fact, vNL is a function of ud according
to

vNL(t) = g̃(ud(t)). (2)

The RLC-circuit is in Laplace domain described by

Ud(s) = ZE(s)E(s)−ZDC(s)Id(s) (3)

where

ZE(s) =
1

LCs2 +RCs+1
,

ZDC(s) =
Ls+R

LCs2 +RCs+1
.

Combining equations (1)-(3) gives the feedback sys-
tem depicted in Fig. 2.
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Fig. 2. Model of the induction machine drive.

The goal of the previous work and of this paper is to
validate if this unmodelled nonlinearity causes insta-
bility. In this paper, however, the validation is done in
a more structured way and with a new procedure, the

so-called power iterations that will be introduced in
the next section. As discussed in the previous work,
the transfer function −ZDC(q)/(1 + G0(q)ZDC(q)) is
stable and the stability of the system in Fig. 2 is equiv-
alent to stability of the system in Fig. 3.
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Fig. 3. Equivalent closed loop system.

The approach taken is inspired by the work in
(Schoukens et al., 2002), on identification of the sta-
bility of feedback systems in the presence of nonlinear
distortions. Denoting the output from the linear filter
in Fig. 3 by w(t), we have

w(t) = − ZDC(q)
1+G0(q)ZDC(q)

vNL(t). (4)

If
||w|| ≤ β ||ud ||+α , (5)

where 0 ≤ β < 1, the small-gain theorem implies that
the closed loop system is stable, see (Khalil, 2002).
The constant α can be used to model off-sets and
external L2 signals, see (Ljung, 2001). The goal of the
power iterations discussed in the next section is thus to
get a more accurate estimate for β than in the previous
paper.

3. THE POWER ITERATIONS

In this section we discuss a procedure, the so-called
power iterations, to estimate β in equation (5). This es-
timate can then be used to infer stability, as discussed
in the previous section. The L2-gain β of the system
in Fig. 3 is formally defined as

β = sup
u�=0

||w||
||u|| (6)

Here the L2-norm is used, which for a vector x ∈ R
n

is defined as

||x|| =
[

n

∑
i=1

|x(i)|2
]1/2

. (7)

The problem is of course to find the input sequence
which gives the maximal gain. For linear systems, the
worst case input signal is a sinusoid corresponding
to the maximum gain of the system and the problem
therefore simplifies to finding this frequency. For non-
linear models, however, this might not be the case.
From (6) it is clear that an estimate which is a lower
bound for the gain will be obtained by computing the
ratio ||w||/||u|| for any input u. However, it is not at
all clear what input should be used in order to get
an estimate close to the actual gain. In this paper we
will apply a method where iterative experiments on
the system are used to obtain a gain estimate. The
iterations produce monotonically increasing gain es-
timates for LTI systems and the convergence point can



be made arbitrarily close to the system gain by using
long enough experiments. In (Hjalmarsson, 2004) it is
illustrated, by way of an example, that power iterations
also may be useful for certain nonlinear systems. The
method is called power iterations due to its close con-
nection with the power method, used in linear algebra
to iteratively compute an approximation of the largest
eigenvalue of a symmetric matrix. The power method
appears in many standard books on matrix analysis,
e.g. (Golub and van Loan, 1983). We will now de-
scribe how the iterations work in the linear case.

3.1 The L2-gain of Finite Data Discrete LTI Systems

This section deals with the L2-gain of finite data
discrete linear time invariant (LTI) systems. Consider
the linear filter

G(q) =
∞

∑
k=0

g(k)q−k (8)

where g(k) denotes the impulse response. In practical
experiments, the input to the system (8) is always a
sequence of finite length. Denote this finite sequence
of length N by uN = ( u(1) u(2) . . . u(N) )T . The
output, which also is a finite sequence of length N, is
denoted by wN = ( w(1) w(2) . . . w(N) )T . In matrix
representation the relation between the finite input and
the output therefore is

wN = GuN (9)

where

G =

⎛
⎜⎜⎝

g(0) 0 0 0 ... 0
g(1) g(0) 0 0 ... 0
g(2) g(1) g(0) 0 ... 0

...
. . .

. . .
. . .

g(N−1) ... g(2) g(1) g(0)

⎞
⎟⎟⎠ (10)

Now we would like to obtain an estimate of the L2-
gain of the system (8) using the definition (6). An input
sequence of finite length gives an underestimation of
the gain since it holds that

||w||
||u|| ≥

||wN ||
||uN || (11)

Thus for the system (8) with a finite input sequence
of length N a lower bound for the L2-gain can be
calculated according to

max
uN

||wN ||
||uN || = ||G|| = σ(G) =

√
λmax(G∗G) (12)

Here σ denotes the maximum singular value and λmax
the eigenvalue of largest modulus. Therefore what we
now would like to calculate is the largest eigenvalue
of the matrix G∗G and the corresponding eigenvector,
which is the input sequence that maximizes the gain
calculated in (12). A procedure to estimate the largest
eigenvector is the power method described in the next
section.

3.2 The Power Method

The goal of this section is to estimate the largest
eigenvalue of G∗G. Therefore define the symmetric
matrix

A = G∗G (13)
and let λmax be the eigenvalue of A with largest modu-
lus and vmax its corresponding eigenvector with length
1. The power method can be used to find an estimate
of vmax and λmax in the following way. Starting with
vector v0, calculate vk+1 = Avk

||Avk|| for k = 0,1,2, ....
The iterations converge to vmax and an approximation
of the largest eigenvalue is λmax ≈ vT

k Avk. For con-
vergence the initial vector v0 must have a component
in the direction of vmax. In the experiments treated in
Section 4 we will chose a white input sequence as
initial vector to ensure this property.

3.3 The Power Iterations

This section is a practical implementation of the power
method described in Section 3.2. Consider a system
with input u(t) and output w(t). The power iteration
algorithm is as follows:

(1) Let k = 0 and select an arbitrary input sequence{
uk

}N
t=1 with

∥∥uk
∥∥

2 = η .
(2) Perform experiments where the input sequence

uk(t) is applied to the system and use (2) and (4)
to calculate the output wk(t).

(3) Calculate the gain β̂ =

∥∥wk

∥∥
2

η .

(4) Let uk+1(t) = wk(−t)
β̂

.

(5) Let k = k+1 and go to Step 2.

The reversal of time in Step 3 is a mere technicality
that has to do with multiplying with the adjoint matrix,
compare with equation (13). Particular to nonlinear
systems is that the gain may be dependent on the
norm of the input signal. Therefore, in Step 1 different
norms η may give rise to more or less accurate gain
estimates. Here, as an illustration of the power itera-
tion, we first present a linear example. In this example
we also consider the case where a disturbance is added
to the output.

Example 1. Consider a linear system with magnitude
plot shown in Fig. 4.
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Fig. 4. Magnitude plot of the frequency response in
Example 1.

We see that the maximum gain occurs at ω ≈ 1 rad/s.
As initial input, a white noise sequence of length
N = 200 and variance 1 is applied. Then, 10 power
iterations are performed. The gain estimate versus
iteration number is shown in Fig. 5. We see that the
gain increases monotonically to a lower bound for the
true gain of the system. The gap to the true gain can be
made arbitrarily small by increasing the experiment
time suitably.
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Fig. 5. The gain in Example 1 versus power iteration
number (solid line). The true gain of the system
is marked with dashed line.

The output in the last iteration is shown in Fig. 6.
Clearly, this is approximately a sinusoid with fre-
quency around 1 rad/s.
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Fig. 6. The output in Example 1 after 10 power itera-
tions.

Now consider the case where a white disturbance with
variance 2 is added to the output, which means that
the signal to noise ratio is below one. In Fig. 7 the
gain versus iteration number is plotted. The output in
the last iteration as well as the disturbance is plotted
in Fig. 8. We see that despite the disturbance the gain
converges to the lower bound for the true gain of the
system.
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Fig. 7. The gain in Example 1 versus power iteration
number (solid line) in case of an output distur-
bance. The true gain of the system is marked with
dashed line.

For nonlinear systems there is at present no theoretical
support for power iterations. They produce, of course,
lower bounds to the induced gain but nothing is known
about their accuracy. However, simulation examples
in (Hjalmarsson, 2004) indicate that the method pro-
duces useful results for at least some nonlinear sys-
tems. An interesting observation is that if the iterations
do not converge to a sinusoid, the system must be non-
linear. Here, we present another simulation example
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Fig. 8. Solid line: the output in Example 1 in case of
an output disturbance after 10 power iterations.
Dotted line: the output disturbance.

that further encourages the use of power iterations for
nonlinear system.

Example 2. Consider the nonlinear system with input
v and output w defined by

w = ∆ϕ(v) ⇔
{ ż = w, z(0) = 0

w = ϕ(v− z), (14)

where ϕ(x) is defined by

ϕ(x) =
{ x− sign(x), |x| > 1

0, |x| ≤ 1 (15)

The system is depicted in Fig. 9.
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Fig. 9. The nonlinear system in Example 2.

The L2-gain from input to output is no greater than 1,
see (Jönsson and Megretski, 2000). A white signal of
length N = 500 and with variance 1 is applied as the
initial input. Then, 35 power iterations are performed.
The gain estimate versus iteration number is shown in
Fig. 10. We see that the gain increases monotonically
to a lower bound for the true gain of the system.
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Fig. 10. The gain in Example 2 versus power iteration
number (solid line). The true gain of the system
is marked with dashed line.

The output in the last iteration is shown in Fig. 11.
Clearly, this is neither a sinusoid nor a white signal.
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Fig. 11. The output in Example 2 after 35 power
iterations.

4. EXPERIMENTAL RESULTS

The aim of this section is to evaluate the stability
margins of the induction machine drive through ex-
periments. In this paper, we use a new approach for
doing this, namely power iterations. These new results
are presented in Section 4.2. However, to facilitate the
comparison of the new results in this paper and the
previous ones in (Mosskull et al., 2003), we summa-
rize in Section 4.1 the experimental results previously
presented.
All experiments have been done on an industrial
hardware-in-the-loop simulator at Bombardier Trans-
portation, Sweden. An indication of the operating con-
ditions are given by the following data:

DC-link capacitance C = 0.004 F
DC-link inductance L = 0.005 H
DC-link resistance R = 0.04 Ohm
Nominal DC-link voltage 1700 V
Nominal motor speed 29 Hz

The resonance frequency of the input filter is given
by ω0 = 1/

√
LC and the damping factor by ζ =

R
√

C/(2
√

L). The damping factor for the system in
the example will be around 0.02 and the resonance
frequency equals 35.5 Hz.
The properties of the drive depend e.g. on the motor
speed and torque load. Here we have evaluated the
system at 100 different motor speeds between 5.8 and
47.85 Hz at equidistant increments. The torque has
been set to zero.
The linear transfer functions G0 are estimated in the
frequency range 10 to 180 Hz. The model error vNL(t)
is calculated in open-loop from the measured voltage
and current. The gain from ud to w is then estimated
as

β̂ =

∥∥w
∥∥

2∥∥ud
∥∥

2

. (16)

4.1 Previous Experimental Results

This section is a summary of the experimental results
in (Mosskull et al., 2003), where power iterations were
not used. Instead, the choice of input sequence was
done with physical insight of the system rather than
in a systematic way. By studying the magnitude plot
of the linear transfer function ZDC/(1+G0ZDC) given
in Fig. 12 we can assume that an input signal with
energy around the frequency which corresponds to
the maximum gain of the linear transfer function will
give high gain. Therefore, as a qualified estimate of

the maximizing input signal, sinusoidal signals with
frequency equal to the resonance frequency were used
in the previous work to excite the system.
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Fig. 12. Magnitude plot of ZDC
1+G0ZDC

as a function
of motor speed. The high gain peaks around
the resonance frequency of the transfer function
occur at low motor speed.

Fig. 13 shows the experimental results of the estimated
stability gains for zero torque as a function of motor
speed. This result shows that the gains are well below
one. It should be noticed that the controller of the mo-
tor has been carefully designed to optimize stability
and performance.
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Fig. 13. Estimated stability gains β̂ for zero torque as
a function of motor speed for sinusoidal input.

4.2 New Experimental Results Using Power Iterations

The purpose of this contribution is to use a more sys-
tematic approach to finding the maximum gain. There-
fore, the method of power iterations, described in Sec-
tion 3, is now used to calculate the maximum gain of
the loop in Fig. 3. A white initial input disturbance
sequence of DC-link voltage ud(t) with zero mean and
variance 1 multiplied with amplitude 84.8 V was used.
All input sequences applied to the system have been
normed so that they have the same norm as the input
sequence used in the experiments described in Section
4.1. To avoid tripping the system, the amplitude of the
input sequence was limited to 200 V. The number of
iterations in the power method for each motor speed
was 19.

In Fig. 14, the gains after zero and 19 iterations for
all motor speeds are shown. Note that the gain after
zero iteration is the gain from a white noise input. The
gain is below one for all speeds and therefore the small
gain theorem implies that we have stability margin. In
Fig. 15 the gain versus iteration number for the motor



speeds 7.5, 34 and 44 Hz are shown. We see that after a
few iterations the gain converges at speeds 34 and 44
Hz. However, for motor speed 7.5 Hz, the gain does
not change in the iterations. This is the case for all
speeds lower than 30 Hz.
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Fig. 14. Estimated stability gains β̂ calculated with
power iterations as a function of motor speed.
The gain after zero iteration (white noise input)
is the dash-dotted line and the solid line is the
gain after 19 iterations.
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Fig. 15. Estimated stability gains β̂ versus iteration
number in the power method. The motor speeds
are 7.5 (dash-dotted), 34 (dashed) and 44 (solid)
Hz.

We see, comparing Fig. 14 and 13, that at low motor
speeds, the power iterations give about the same max-
imum gain compared to the case where the input is a
single sinusoid with frequency equal to the resonance
frequency of the linear filter in Fig. 12. We also see
that for low motor speeds the gain does not change,
no matter the number of iteration. This implies that
the gain of the system at these operating points is
the same, whatever the choice of input. A most likely
explanation for this is that the model error vNL(t), see
Section 2, is small in comparison to disturbances in
the system. These disturbances are e.g. due to mea-
surement offsets. At higher motor speeds however,
the power iterations give input sequences that result
in higher gain. This in turn suggests that the model
error is large in comparison to the disturbances at high
speeds.

We conclude that for low frequencies, the power
method does not result in higher gain than what was
presented in (Mosskull et al., 2003). We believe that
this is due to the dominating stator frequent dis-
turbances at these operating points. For high motor
speeds however, we see that the input sequences gen-
erated by the power iterations give higher gain. These
input sequences have a much broader frequency spec-
trum than sinusoidal signals.

Since there is no theoretical proof that power iterations
converge to the true maximum gain for nonlinear sys-
tems and since there is an input amplitude constraint
in the experiments described in this paper one cannot
be sure that the true maximum gain of the loop in Fig.
3 has been reached. However one can conclude that
at high motor speeds the power iterations result in a
higher gain than the inputs used in the previous work
to excite the system.

5. CONCLUSIONS

Here, the work presented in (Mosskull et al., 2003) on
the validation of stability margins for a nonlinear in-
duction machine drive is extended and improved. The
gain of the unmodelled nonlinear dynamics has been
estimated in a new and more structured way using
power iterations, introduced in (Hjalmarsson, 2004)
and further treated in this paper. Then, the small gain
theorem is applied to verify the stability of the system.
The experimental results suggest that the system in
Fig. 3 is stable, since the gain is well below one.
In the previous work single sinusoids were used as
input signals to estimate the gain. This work, how-
ever, shows that for high motor speeds input sequences
with broader frequency spectrum than single sinusoids
result in higher gain. Therefore, power iterations are
especially useful for estimating the gain at high motor
speeds. For these motor speeds the input obtained with
the power iterations in this paper results in higher gain
than the input signal used in the previous paper. Future
work includes continued investigation on the applica-
tion of the power method to generate the maximizing
input of nonlinear systems.
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